• Title/Summary/Keyword: Total rainfall

Search Result 894, Processing Time 0.038 seconds

Long-term Changes in Wintertime Precipitation and Snowfall over Gangwon Province (강원 지역의 장기 겨울철 강수 및 강설 변화의 경향 분석)

  • Baek, Hee-Jeong;Ahn, Kwangdeuk;Joo, Sangwon;Kim, Yoonjae
    • Journal of Climate Change Research
    • /
    • v.8 no.2
    • /
    • pp.109-123
    • /
    • 2017
  • The effects of recent climate change on hydrological systems could affect the Winter Olympic Games (WOG) because the event is dependent on suitable snow and ice conditions to support elite-level competitions. We investigate the long-term variability and change in winter total precipitation (P), snowfall water equivalent (SFE), and ratios of SFE to P during the period 1973/74~2015/16 in Gangwon province. The climatological percentages of SFE relative to winter total precipitation were 71%, 28%, and 44% in Daegwallyeong, Chuncheon, and Gangneung, respectively. The winter total P, SFE, and SFE/P has decreased (but not significantly), although significant increases of winter maximum and minimum temperature were detected at a 95% confidence level. Notably, a significant negative trend of SFE/P at Daegwallyeong in February, the month of the WOG, was attributable to a larger decrease in SFE related to the increases in maximum and minimum temperature. Winter wet-day minimum temperatures were warmer than climatological minimum temperatures averaged over the study period. The 20-year return values of daily maximum P and SFE decreased in Yongdong area. Since the SFE/P decrease with increasing temperature, the probability of rainfall rather than snowfall can increase if global warming continues.

Estimation of SCS Runoff Curve Number and Hydrograph by Using Highly Detailed Soil Map(1:5,000) in a Small Watershed, Sosu-myeon, Goesan-gun (SCS-CN 산정을 위한 수치세부정밀토양도 활용과 괴산군 소수면 소유역의 물 유출량 평가)

  • Hong, Suk-Young;Jung, Kang-Ho;Choi, Chol-Uong;Jang, Min-Won;Kim, Yi-Hyun;Sonn, Yeon-Kyu;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.363-373
    • /
    • 2010
  • "Curve number" (CN) indicates the runoff potential of an area. The US Soil Conservation Service (SCS)'s CN method is a simple, widely used, and efficient method for estimating the runoff from a rainfall event in a particular area, especially in ungauged basins. The use of soil maps requested from end-users was dominant up to about 80% of total use for estimating CN based rainfall-runoff. This study introduce the use of soil maps with respect to hydrologic and watershed management focused on hydrologic soil group and a case study resulted in assessing effective rainfall and runoff hydrograph based on SCS-CN method in a small watershed. The ratio of distribution areas for hydrologic soil group based on detailed soil map (1:25,000) of Korea were 42.2% (A), 29.4% (B), 18.5% (C), and 9.9% (D) for HSG 1995, and 35.1% (A), 15.7% (B), 5.5% (C), and 43.7% (D) for HSG 2006, respectively. The ratio of D group in HSG 2006 accounted for 43.7% of the total and 34.1% reclassified from A, B, and C groups of HSG 1995. Similarity between HSG 1995 and 2006 was about 55%. Our study area was located in Sosu-myeon, Goesan-gun including an approx. 44 $km^2$-catchment, Chungchungbuk-do. We used a digital elevation model (DEM) to delineate the catchments. The soils were classified into 4 hydrologic soil groups on the basis of measured infiltration rate and a model of the representative soils of the study area reported by Jung et al. 2006. Digital soil maps (1:5,000) were used for classifying hydrologic soil groups on the basis of soil series unit. Using high resolution satellite images, we delineated the boundary of each field or other parcel on computer screen, then surveyed the land use and cover in each. We calculated CN for each and used those data and a land use and cover map and a hydrologic soil map to estimate runoff. CN values, which are ranged from 0 (no runoff) to 100 (all precipitation runs off), of the catchment were 73 by HSG 1995 and 79 by HSG 2006, respectively. Each runoff response, peak runoff and time-to-peak, was examined using the SCS triangular synthetic unit hydrograph, and the results of HSG 2006 showed better agreement with the field observed data than those with use of HSG 1995.

Influence of Forest Management on the Facilitation of Purifying Water Quality in Abies holophylla and Pinus koraiensis Watershed (II) (전나무림(林)과 잣나무림(林) 유역(流域)에서 산림시업(山林施業)이 산림(山林)의 수질정화기능(水質淨化機能)에 미치는 영향(影響)(II))

  • Jeong, Yongho;Park, Jae Hyeon;Kim, Kyong Ha;Youn, Ho Joong;Won, Hyoung Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.88 no.4
    • /
    • pp.498-509
    • /
    • 1999
  • This study aims to clarify the effect of forest management practices(thinning and pruning) in forest hydrological processes on electrical conductivity to get the fundamental information on the facilitation of purifying water quality after forestry practices. Rainfall, throughfall, stemflow, soil and stream water were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Kwangnung Experimental Forest for 6 months from March 1 to August 4, 1998. In case of deviding into forest hydrological processes, multiple regression equations of electrical conductivity and total amount of anion, $NO{_3}^-$ of throughfall, stemflow, soil water of management site in Abies holophylla shows high significance. And multiple regression equations of electrical conductivity and total amount of anion, $SO{_4}^{2-}$, $Cl^-$ of throughfall, stemflow, soil water of non-management site in Abies holophylla shows high significance. Multiple regression equations of electrical conductivity and $NO{_3}^-$, before non-rain days of throughfall, stemflow, soil water of management site in Pinus koraiensis shows high significance. And multiple regression equations of electrical conductivity and total amount of ion, $NO{_3}^-$, $K^+$, pH, total amount of anion of throughfall, stemflow, soil water of non-management site in Plinus koraiensis shows high significance. Multiple regression equations of electrical conductivity and pricipitation, total amount of ion, $Na^+$ of stream water in Abies holophylla and Pinus koraiensis shows high significance. In case of combining into forest hydrological processes, multiple regression equations of electrical conductivity and total amount of cation and anion, $Na^+$, $Cl^-$, and pH in rainfall, throughfall, stemflow, soil and stream water shows high significance.

  • PDF

Long-term Variations of Water Quality Parameters in Lake Kyoungpo (경포호에서 수질변수들의 장기적인 변화)

  • Kwak, Sungjin;Bhattrai, Bal Dev;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.2
    • /
    • pp.95-107
    • /
    • 2015
  • In order to identify long-term trends of water quality parameters in Lake Kyeongpo, Mann-Kendall test, Sen's slope estimator and linear regression were applied on data, with 15 parameters from three different sites and rainfall, monitored once in every two months from March to November during 1998~2013. Seasonal variation analysis only used Mann-Kendall test and Sen's slope estimator. Analysis result showed that salinity, transparency and nutrient variables (total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen, ammonia nitrogen) were only parameters having statistically significant trend. In linear regression analysis, salinity (surface and bottom layer of all sites) and transparency (only at site 1), were figured out with statistically significant increasing trend, while in non-parametric statistical method, salinity and transparency in all sites (surface, middle, deep) were figured out with statistically significant increasing trend. Water quality parameters showing statistically significant decreasing trends were dissolved oxygen (surface layer of site 1 and bottom layer of sites 2 and 3), total phosphorus (sites 1 and 2), dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the linear regression analysis and, dissolved oxygen (bottom layer of all sites), total phosphorus, dissolved inorganic phosphorus, total nitrogen, nitrate nitrogen and ammonia nitrogen in the non-parametric method. Seasonal trend analysis result showed that salinity, turbidity, transparency and suspended solids in spring, salinity, transparency, nitrate nitrogen and suspended solids in summer and temperature, salinity, transparency and suspended solids in fall were the variables depending on the season with increasing trends. In general, rainfall during the research period showed decreasing trend. The significant reduction trends of nutrients in Lake Kyeongpo were believed to be related to lagoon restoration and water management project run by Gangneung city and under-water wear removal, but further detailed studies are needed to know the exact causes.

The Effect of Carbon Dioxide Leaked from Geological Storage Site on Soil Fertility: A Study on Artificial Leakage (지중 저장지로부터 누출된 이산화탄소가 토양 비옥도에 미치는 영향: 인위 누출 연구)

  • Baek, Seung Han;Lee, Sang-Woo;Lee, Woo-Chun;Yun, Seong-Taek;Kim, Soon-Oh
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.409-425
    • /
    • 2021
  • Carbon dioxide has been known to be a typical greenhouse gas causing global warming, and a number of efforts have been proposed to reduce its concentration in the atmosphere. Among them, carbon dioxide capture and storage (CCS) has been taken into great account to accomplish the target reduction of carbon dioxide. In order to commercialize the CCS, its safety should be secured. In particular, if the stored carbon dioxide is leaked in the arable land, serious problems could come up in terms of crop growth. This study was conducted to investigate the effect of carbon dioxide leaked from storage sites on soil fertility. The leakage of carbon dioxide was simulated using the facility of its artificial injection into soils in the laboratory. Several soil chemical properties, such as pH, cation exchange capacity, electrical conductivity, the concentrations of exchangeable cations, nitrogen (N) (total-N, nitrate-N, and ammonia-N), phosphorus (P) (total-P and available-P), sulfur (S) (total-S and available-S), available-boron (B), and the contents of soil organic matter, were monitored as indicators of soil fertility during the period of artificial injection of carbon dioxide. Two kinds of soils, such as non-cultivated and cultivated soils, were compared in the artificial injection tests, and the latter included maize- and soybean-cultivated soils. The non-cultivated soil (NCS) was sandy soil of 42.6% porosity, the maize-cultivated soil (MCS) and soybean-cultivated soil (SCS) were loamy sand having 46.8% and 48.0% of porosities, respectively. The artificial injection facility had six columns: one was for the control without carbon dioxide injection, and the other five columns were used for the injections tests. Total injection periods for NCS and MCS/SCS were 60 and 70 days, respectively, and artificial rainfall events were simulated using one pore volume after the 12-day injection for the NCS and the 14-day injection for the MCS/SCS. After each rainfall event, the soil fertility indicators were measured for soil and leachate solution, and they were compared before and after the injection of carbon dioxide. The results indicate that the residual concentrations of exchangeable cations, total-N, total-P, the content of soil organic matter, and electrical conductivity were not likely to be affected by the injection of carbon dioxide. However, the residual concentrations of nitrate-N, ammonia-N, available-P, available-S, and available-B tended to decrease after the carbon dioxide injection, indicating that soil fertility might be reduced. Meanwhile, soil pH did not seem to be influenced due to the buffering capacity of soils, but it is speculated that a long-term leakage of carbon dioxide might bring about soil acidification.

Evaluation of Pollutants Concentrations and Runoff Characteristics in Highway Rest Area (국내 고속도로 휴게소지역 비점오염원 유출특성 분석)

  • Kim, Jeong-Hyun;Kang, Hee-Man;Ko, Seok-Oh
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.131-137
    • /
    • 2010
  • The stormwater runoff from rest areas in highways are known as more polluted compared to highways because of more vehicle activities. This study is performed to find pollutant characteristics in the rest areas in the magnitude of statistical pollutant concentrations during storms. Washoff characteristics of pollutants from rest areas by monitoring of rainfall, runoff rate and runoff samples were evaluated. High concentrations of pollutants in runoff were observed at the beginning of runoff and rapid decrease thereafter, indicating that first-flush effects are clearly occurred. Event Mean Concentrations(EMCs) of TSS, COD, TN, and TP are estimated to be in the range of 31.04-127.11mg/L, 35.5-369.5mg/L, 2.62-9.86 mg/L, and 0.53-1.96mg/L, respectively. Heavy metals in runoff showed relatively high values, possibly due to the abrasion of brake pad or tire while cars are slowly moving for parking. EMCs of total Pb, total Cu, and total Ni are in the range of $1206-16293{\mu}g/L$, $237-7906{\mu}g/L$, and $53-6372{\mu}g/L$, respectively. Pollutant loading per rest area calculated by using EMC, flowrate and target area is also described for each pollutant.

Influences of Forest Management Practices on pH and Electrical Conductivity in the Throughfall and Stemflow with the Abies holophylla and Pinus koraiensis Dominant Watershed (전나무림, 잣나무림 유역에서 수관통과우와 수간유하수의 수소이온농도 및 전기전도도에 미치는 산림시업의 영향)

  • Jeong, Yong-Ho;Kim, Kyong-Ha;Park, Jae-Hyeon
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.1 s.97
    • /
    • pp.52-61
    • /
    • 2002
  • This research was conducted to evaluate the effect of forest management practices on pH and electrical conductivity to get fundamental information on water purification capacity after forest operation. Rainfall, throughfall and stemflow were sampled at the study sites which consist of Abies holophylla and Pinus koraiensis in Gwangreung Experimental Forest for S months from May to November 1999. Mean pH of the throughfall of the beginning of the event was higher in management (thinning and pruning) sites of Abies holophylla and Pinus koraiensis stands than nonmanagement site of Abies holophylla and Pinus koraiensis stands. In addition, pH of the throughfall of the total amount of the event showed similar trends which are higher pH in the management sites compared with the non- management sites. This result indicates that managements such as thinning and pruning improve tree butler capacity of rainfall pH. According to the linear regression results, pH of the throughfall of the total amount of the event in non-management sites = 0.735${\times}$pH of the throughfall of the beginning of the event in non-management sites+1.849 ($R^2\;=\;0.82$) and pH of the throughfall of the total amount of the event in management sites= 0.863${\times}$pH of the throughfall of the beginning of the event in management sites +1.0242 ($R^2\;=\;0.87$). In case of stemflow pH, pH of the sternflow of the total amount of the event in non-management sites = 0.53${\times}$pH of the stemflow of the beginning of the event in non- management sites+2.7709 ($R^2\;=\;0.64$) and pH of the stemflow of the total amount of the event in management sites = 0.5854${\times}$pH of the stemflow of the beginning of the event in management sites+2.7045 ($R^2\;=\;0.65$). Electrical conductivity (EC) of the throughfall of the beginning and total amount of the event was highest in non- management site in Abies holophylla, followed by management sites in fsies Abies holophylla, non-management site in Pinus koraiensis, and management sites in Pinus koraiensis stands, respectively. According to the linear regression results, EC of the throughfall of the total amount of the event in non-managementsites = 0.4045${\times}$EC of the throughfall of the beginning of the event in non-management sites+26.766 ($R^2\;=\;0.69$) and EC of the throughfall of the total amount of the event in management sites = 0.6002${\times}$EC of the throughfall of the beginning of the event in management sites+8.0184 ($R^2\;=\;0.54$). In case of stemflow EC, EC of thestemflow of the total amount of the event in non-management sites = 0.6298${\times}$EC of the stemflow of the beginning of the event in non-management sites+11.582 ($R^2\;=\;0.72$) and pH of the stemflow of the total amount of the event in management sites =0.602${\times}$pH of the stemflow of the beginning of the event in management sites+20.783($R^2\;=\;0.49$).

Stand Water Balance and Stream Water Quality in Small Forested Watershed Yangpyong Gyeonggido (경기도(京畿道) 양평지역(陽平地域) 산림(山林) 소류역(小流域)의 수수지(水收支)와 계류수(溪流水)의 수질특성(水質特性))

  • Kim, Jung-You;Han, Sang-Sup
    • Journal of Forest and Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.18-28
    • /
    • 2001
  • This study was carried out to investigate the characteristics of water quality variations by stand water balance in YangPyong-Gun Gejung-Lee small forest watershed. Water quantity. pH, $Cl^-$, $NO_3{^-}$, $SO_4{^{2-}}$, $Na^+$, $NH_4{^+}$, $K^+$, $Mg^{2+}$, $Ca^{2+}$ were monitored in open rainfall for one unit storm and long-term stream water in small forest watershed from January. 1998 to December. 1999. The results were summarized as follows: The runoff rate was 46.4% in 1998 and 52.2% in 1999. The average pH values of rainfall were 4.8 to 6.2 and those of stream water were 6.4 to 7.1 in small forest watershed. Total amount of input anion and cation values (kg/ha) in rainfall were $SO_4{^{2-}}>NO_3{^-}>Ca^{2+}>NH_4{^+}>Cl^->Na^+>K^+>Mg^{2+}$ and in stream water were $NO_3{^-}>Ca^{2+}>SO_4{^{2-}}>Na^+>Cl^->K^+>Mg^{2+}>NH_4{^+}$ in the order, respectively. The dissolved $NH_4{^+}$ was stored 5.29kg/ha and output of the other contents were more flow than input in small forest watershed.

  • PDF

Water Quality Monitoring of the Ecological Pond Constructed by LID Technique in Idle Space (유휴 공간에 LID 기법을 활용한 생태연못의 수질 모니터링)

  • Ahn, Chang-Hyuk;Song, Ho-Myeon;Park, Joon-Ha;Park, Jum-Ok;Park, Jae-Roh
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.674-684
    • /
    • 2018
  • The purpose of this study is to construct ecological pond using LID technique in order to create naturally comfortable community space in urban idle space. The specification of the ecological pond is $110m^2$ of surface area, $0.45{\pm}0.02m$ of average depth, and bed material is composed of gravel (diameter ${\leq}60mm$), sand (diameter ${\leq}2mm$) and bentonite. Rainfall and water depth monitoring were conducted to determine the annual characteristics of inflow of the water for the ecological pond, result of total rainfall was 1,287 mm and showed a seasonal imbalance that accounted for 71.3% (918 mm) during July to August, but the annual mean water depth was kept constant at $0.45{\pm}0.02m$ due to the secondary water source. Annual trends of basic water quality showed a significant changes according to the season, such as water temperature ($5.2{\sim}28.8^{\circ}C$), DO (5.0 ~ 13.8 mg/L), EC ($113{\sim}265{\mu}S/cm$). BOD, COD, TN, and TP in physicochemical water quality tended to increase after October, but the ion parameters such as $NH_3$ and $PO_4{^{3-}}$ were generally low. Phytoplankton indicators Chl-a and BGA (blue green algae) showed a sharp increase from July to August, and green algae (Selenastrum bibraianum, Pediastrum boryanum etc.) and filamentous blue green algae (Phormidium sp.) emerged as a dominant species. The ion parameters ($F^-$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) were strongly correlated with the $Cl^-$ as a conservative substance (R=0.70~0.97, p<0.05). Water quality was influenced by the ambient environment such as seasonal changes or rainfall, and it was closely related to fluctuation of the inflow of the water. In the future, it is necessary to consider ecological connections by referring to the characteristics surveyed in this study in order to effectively manage the water quality and biodiversity of the ecological pond in idle space.

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area (비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성)

  • Park, Ji-Young;Bae, Sang-Ho;Yoon, Young-H.;Lim, Hyun-Man;Park, Jae-Roh;Oh, Hyun-Je;Kim, Weon-Jae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.11
    • /
    • pp.720-728
    • /
    • 2012
  • In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.