DOI QR코드

DOI QR Code

Correlation of Nonpoint Pollutant and Particulate Matters at a Small Suburban Area

비시가화지역에서 비점오염물질과 입자성물질의 유출 상관성

  • Park, Ji-Young (Department of Construction & Environment Engineering, University of Science & Technology) ;
  • Bae, Sang-Ho (Department of Water Ecosystem Facilities, Korea Environment Corporation) ;
  • Yoon, Young-H. (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Lim, Hyun-Man (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Park, Jae-Roh (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Oh, Hyun-Je (Environmental Engineering Research Division, Korea Institute of Construction Technology) ;
  • Kim, Weon-Jae (Environmental Engineering Research Division, Korea Institute of Construction Technology)
  • 박지영 (과학기술연합대학원대학교 건설환경공학과) ;
  • 배상호 (한국환경공단 수생태시설처) ;
  • 윤영한 (한국건설기술연구원 환경연구실) ;
  • 임현만 (한국건설기술연구원 환경연구실) ;
  • 박재로 (한국건설기술연구원 환경연구실) ;
  • 오현제 (한국건설기술연구원 환경연구실) ;
  • 김원재 (한국건설기술연구원 환경연구실)
  • Received : 2012.10.08
  • Accepted : 2012.11.16
  • Published : 2012.11.30

Abstract

In general, nonpoint pollutant of a watershed is drained out in the form of storm water runoff during rainfall events. As the bulk of the nonpoint pollutant is in adsorbed form on particulate matters, in order to understand the behavior of nonpoint pollutant it is essential to grasp the characteristics of particulate matters in rainfall runoff. Though, previous studies for the relationship between the runoff characteristics of pollutants and the size distribution of particulate matters are very rare. In this study, a small non-urbanized area (basin area of 52.8 ha) with various landuse types including paddy, dry fields and forest was selected and investigated in detail for the runoff properties of each pollutant during several rainfall events. The correlation and effects between particulate matters and nonpoint pollutant were analyzed quantitatively. As a result, the significant first flush was observed on each event and it became clear that fine particulate matters ($80{\mu}m$ or less) has contributed in the runoff process of nutrients and heavy metals. Organic matters ($BOD_5$, TOC), nutrients (TN, TP) and several heavy metals (Al, Cr, Cu, Fe, Hg and Zn) represented high correlations with SS (total), VSS, SS (d < $20{\mu}m$) and SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$). On the other hand, $COD_{cr}$, Cd, Mn and Pb did not show clear correlations with the behavior of particulate matters. Therefore, we have to examine the introduction of nonpoint pollution mitigation facilities considering the facts that nonpoint pollutant runoff process has high correlation with the behavior of particulate matters and is changeable based on the target pollutants.

강우시 상당 부분의 비점오염물질은 입자성물질에 흡착된 형태로 유출되기 때문에 비점오염물질의 유출 거동을 보다 정확하게 이해하기 위해서는 입자성물질과의 상관성을 정량적으로 파악하는 것이 중요하다. 그러나 강우시 오염물질별 유출특성과 입도분포와의 상관성에 대한 연구사례는 매우 부족한 실정으로, 특히 도시화가 진전되지 않은 비시가화지역을 대상으로 한 국내 연구는 보고된 예가 거의 없다. 본 연구에서는 논, 밭 및 임야 등으로 구성된 소규모 비시가화지역(유역면적 52.8 ha)을 선정하여 다양한 규모의 강우사상별 유출특성을 조사하고, 오염물질의 유출특성과 입자성물질의 거동 사이의 상관관계를 분석하였다. 또한, 비점오염물질의 유출에 미치는 입자성물질의 영향에 대하여 정량적인 분석을 실시하였다. 연구결과, 중소규모 강우에서도 초기유출현상이 관찰되었으며, 입자성물질이 영양염류 및 중금속의 유출과정에 큰 기여를 하고 있는 것으로 나타났다. 특히, $BOD_5$와 TOC의 유기물항목, TN과 TP의 영양염류, Al, Cr, Cu, Fe, Hg 및 Zn의 중금속항목 등이 SS (total), VSS, SS (d < $20{\mu}m$) 및 SS ($20{\mu}m$ $$\leq_-$$ d < $80{\mu}m$)와 높은 상관성을 보여 입자성물질과 유사한 유출거동을 갖는 것으로 나타났다. 한편, $COD_{cr}$, Cd, Mn 및 Pb는 입자성물질의 유출거동과 뚜렷한 상관성을 보이지 않았다. 비시가화지역에서 비점오염물질의 유출과정은 입자성물질의 거동과 상관성이 높을 뿐만 아니라 처리대상물질에 따라서도 상이한 특성을 갖는다는 점을 고려한 비점오염 저감시설의 도입이 이루어져야 할 것으로 판단된다.

Keywords

Acknowledgement

Supported by : 한국건설기술연구원

References

  1. Furumai, H., Balmer, H. and Boller, M., "Dynamic behavior of suspended pollutants and particle size distribution in highway runoff," Water Sci. Technol., 46(11-12), 413-418 (2002).
  2. Chebbo, G., "Solids in urban wet weather discharges: characteristics and treatability," Ph. D. Thesis. Ecole Nationale des Ponts et Chaussees, Paris, France(1992).
  3. Andral, M. C., Roger, S., Montrejaud-Vignoles, M. and Herremans, L., "Particle size distribution and hydrodynamic characteristics of solid matter carried by runoff from motorways," Water Environ. Res., 71, 398-407(1999). https://doi.org/10.2175/106143097X122130
  4. 박해미, "포장지역에서의 부유물질 유출특성 및 적정처리 방안 연구," 경희대학교 석사학위논문(2009).
  5. Aryal, R. K., Furumai, H., Nakajima, F. and Jinadasa, H. K. P. K., "The role of inter-event time definition and recovery of initial/depression loss for the accuracy in quantitative simulations of highway runoff," Urban Water J., 4, 53-58(2007). https://doi.org/10.1080/15730620601145873
  6. 김이형, 강주현, "강우시 발생하는 고속도로 유출수의 초기우수 특성 및 기준," 한국물환경학회지, 20(6), 641-646 (2004).
  7. 김석구, 김영임, 강성원, 윤상린, 김소정, "강우에 의한 도로 비점오염원 유출특성," 대한환경공학회지, 28(1), 104-110(2006).
  8. Li, Y., Lau, S.-L., Kayhanian, M. and Stenstrom, M. K., "Particle size distribution in highway runoff," J. Environ. Eng., 131(9), 1267-1276(2005). https://doi.org/10.1061/(ASCE)0733-9372(2005)131:9(1267)
  9. 이준호, 조용진, 방기웅, 최창수, "강우시 교량도로 유출수 수질 및 입경분포," 2007 공동추계학술발표회 논문집, 대한 상하수도학회.한국물환경학회, pp. 787-796(2007).
  10. Vaze, J. and Chiew, F. H. S., "Nutrient loads associated with different sediment sizes in urban stormwater and surface pollutants," J. Environ. Eng., 130(4), 391-396(2004). https://doi.org/10.1061/(ASCE)0733-9372(2004)130:4(391)
  11. Viklander, M., "Particle size distribution and metal content in street sediments," J. Environ. Eng., 124(8), 761-766(1996).
  12. Sansalone, J. J. and Buchberger, S. G., "Partitioning and first flush of metals in urban roadway storm water," J. Environ. Eng., 123(2), 134-143(1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:2(134)
  13. 환경부, "수질오염공정시험방법," (2004).
  14. APHA, AWWA and WEF, "Standard method for the examination of water and wastewater," 20th edition, Washington D.C., U.S.A.(1998)
  15. Bertrand-Krajewski, J. L., Chebbo, G. and Saget, A., "Distribution of pollutant mass vs volume in stormwater discharges and the first flush phenomenon," Water Res., 32(8), 2341-2356(1998). https://doi.org/10.1016/S0043-1354(97)00420-X
  16. Deletic, A., "The first flush load of urban surface runoff," Water Res., 32(8), 2462-2470(1998). https://doi.org/10.1016/S0043-1354(97)00470-3
  17. 배상호, 김원재, 윤영한, 임현만, 김은주, 박재로, "토지이용 특성을 고려한 소규모 농촌유역의 비점오염물질 유출특성 해석," 한국물환경학회지, 26(4), 654-663(2010)

Cited by

  1. Water Balance and Pollutant Load Analyses according to LID Techniques for a Town Development vol.35, pp.11, 2013, https://doi.org/10.4491/KSEE.2013.35.11.795
  2. Effects of the spatial resolution of urban drainage data on nonpoint source pollution prediction vol.25, pp.15, 2018, https://doi.org/10.1007/s11356-018-1377-8