• 제목/요약/키워드: Total rainfall

검색결과 892건 처리시간 0.023초

Trend analysis of rainfall characteristics and its impact on stormwater runoff quality from urban and agricultural catchment

  • Salim, Imran;Paule-Mercado, Ma. Cristina;Sajjad, Raja Umer;Memon, Sheeraz Ahmed;Lee, Bum-Yeon;Sukhbaatar, Chinzorig;Lee, Chang-Hee
    • Membrane and Water Treatment
    • /
    • 제10권1호
    • /
    • pp.45-55
    • /
    • 2019
  • Climate change has significantly affected the rainfall characteristics which can influence the pollutant build-up and wash-off patterns from the catchment. Therefore, this study explored the influence of varying rainfall characteristics on urban and agricultural runoff pollutant export using statistical approaches. For this purpose, Mann-Kendall and Pettitt's test were applied to detect the trend and breakpoint in rainfall characteristics time series. In addition, double mass curve and correlation analysis were used to drive the relationship between rainfall-runoff and pollutant exports from both catchments. The results indicate a significant decreased in total rainfall and average rainfall intensity, while a significant increased trend for antecedents dry days and total storm duration over the study periods. The breakpoint was determined to be 2013 which shows remarkable trend shifts for total rainfall, average rainfall intensity and antecedents dry days except total duration. Double mass curve exhibited a straight line with significant rainfall-runoff relationship indicates a climate change effect on both sites. Overall, higher pollutant exports were observed at both sites during the baseline period as compared to change periods. In agricultural site, most of the pollutants exhibited significant (p< 0.05) association with total rainfall, average rainfall intensity and total storm duration. In contrast, pollutants from urban site significantly correlated with antecedent dry days and average rainfall intensity. Thus, total rainfall, average rainfall intensity and total duration were the significant factors for the agricultural catchment while, antecedents dry days and average rainfall intensity were key factors in build-up and wash-off from the urban catchment.

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • 지질공학
    • /
    • 제24권4호
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

강수지표를 이용한 남·북한 강수특성 비교 (Comparison of Precipitation Characteristics using Rainfall Indicators Between North and South Korea)

  • 이보람;정은성;김태웅;권현한
    • 대한토목학회논문집
    • /
    • 제33권6호
    • /
    • pp.2223-2235
    • /
    • 2013
  • 본 연구는 남 북한에서 시 공간적 강수특성 변화를 이해하고자, 남한 65개 기상청 관측소에서 1963년부터 2010년까지, 북한 27개 관측소에서 1973년부터 2010년까지 측정된 일 강수량 자료를 분석했다. 총량(Amount), 극치(Extremes)와 빈도(Frequency)를 나타내는 지표들을 선정하였고, 각각의 지표를 RIA (Rainfall Index for Amount), RIE (Rainfall Index for Extremes), RIF (Rainfall Index for Frequency)로 정의하였다. 남 북한 행정구역별로 2000년까지 평균 지표 값과 2001년부터 2010년까지 최근 10년 평균 지표 값을 비교하였다. 과거에 비해 최근 10년간 남한은 연중 강우일수를 나타내는 NWD (Number of Wet Days)와, 200년 빈도 강수량을 나타내는 Freq200 (200-yr Frequency Rainfall)을 제외한 SDW (Annual mean daily rainfall over wet-days), TotalDR (Annual Total Rainfall Amount), Prcp50 (Annual number of wet days over 50 mm/day), Prcp80 (Annual number of wet days over 80 mm/day), CWD (Annual maximum number of consecutive wet-days), AMDR (Annual maximum daily rainfall), 그리고 R3day (Annual maximum 3-days rainfall total) 값들이 모두 증가한 양상을 보였지만 북한은 SDW와, 연총강우량 TotalDR을 제외하곤 모두 감소하였다. 또한 연평균 지표 값의 경향성을 확인하기 위해 통계적 방법인 Mann-Kendall 검정을 실시하였다. 과거 감소의 경향을 나타내던 각 관측지점이 최근에 이르러서는 경향성의 역전 되는 현상을 보인 곳이 나타났으며, 이는 평균값만을 바탕으로 강수사상 특성변화를 분석하는 방법의 한계점으로 볼 수 있다. 본 연구의 결과는 한반도 물 관리 기후변화에 대한 영향 분석과 대응 대책 마련에 활용될 수 있을 것이다.

빗물펌프장에 설치된 인공습지의 비점오염원 저감효율 연구 (A Study of Non-point Source Reduction Efficiency by Constructed Wetland installed in Flood Pumping Station)

  • 천석영;김지태;이일국;장순웅
    • 환경영향평가
    • /
    • 제23권1호
    • /
    • pp.67-74
    • /
    • 2014
  • The aim of this study was evaluated the effects of total rainfall, rainfall intensity and antecedent dry days and identify the correlation analysis with the EMC removal efficiency, in order to provide an understanding of the operation and maintenance factors of constructed wetland in flood pumping station. This study was conducted total of 20 monitoring in a catchment(326.2 ha) of constructed wetland in Ga-un flood pumping station located at the downstream of the Wang-suk stream. The determined EMC removal efficiencies were $36.04{\pm}9.45%$ for BOD, $38.50{\pm}13.50%$ for $COD_{Mn}$, $34.34{\pm}13.05%$ for TN and $34.22{\pm}14.27%$ for TP, respectively. These results showed that the pollutants concentration and EMC were reduced while passing through the constructed wetland. In the correlation analysis, the highly correlations with EMC removal efficiency of BOD and $COD_{Mn}$ were observed for total rainfall and rainfall intensity (P<0.05). However, the correlations were not found with TN and TP for rainfall variables.

연최대 호우사상 계열을 이용한 측우기자료 및 현대자료의 비교 (Comparison of Chukwooki and Modern data Using Annual Maximum Rainfall Event Series)

  • 박민규;유철상;김현준
    • 대한토목학회논문집
    • /
    • 제30권2B호
    • /
    • pp.137-147
    • /
    • 2010
  • 본 연구에서는 연최대 호우사상 계열을 이용하여 측우기자료와 현대자료를 비교하였다. 측우기 시강우 자료를 이용하여 현대 빈도해석에서 필요한 특정지속기간의 연최대치 계열을 얻는 것이 불가능하므로 두 관측기간의 비교를 위해 독립호우사상 개념을 이용해 연최대 호우사상 계열을 작성하였다. 연최대호우사상은 이변량지수분포를 이용하여 결정하였으며 모수 추정을 위해 연도별 모수를 이용하는 경우가 보다 적절할 것으로 검토되었다. 이는 연도별 모수를 이용할 경우의 결과가 모수의 경년별 변동성이 연강수량의 변동성과 비교해 의미를 가지기 때문이다. 전체적인 독립호우사상을 비교한다면 현대기록이든 측우기기록이든 강우지속기간에서는 큰 차이가 없지만 현대보다는 측우기 관측기록의 경우가 총강우량과 강우강도가 크게 나타났다. 그러나, 연최대 호우사상의 비교에서는 측우기에 비해 현대의 경우가 강우지속기간이 현격하게 길어지면서 강우강도는 큰 차이가 없게 나타나 총강우량에서 상당한 증가를 보이는 것으로 확인되었다. 또한 이러한 연최대호우사상의 경향성을 살펴본 결과 현대관측기간 동안에는 강우지속기간과 총강우량이 증가하는 경향을 보이고 있지만 측우기 관측기록과 비교시에는 일정한 주기성의 한 부분으로 보는 것이 보다 적절한 것으로 판단되었다.

수질오염총량관리 배출부하량에 대한 강우영향 분석연구 (Rainfall Effects on Discharged Pollution Load in Unit Watershed Area for the Management of TMDLs)

  • 박준대;오승영
    • 한국물환경학회지
    • /
    • 제26권4호
    • /
    • pp.648-653
    • /
    • 2010
  • Discharged pollution load for the management of Total Maximum Daily Loads (TMDLs) is calculated on the basis of rainfall data for reference year. Rainfall has an influence on discharged pollution load in unit watershed with combined sewer system. This study reviewed the status of discharged pollution load and rainfall conditions. We also investigated rainfall effects on discharged pollution load by analyzing change of the load in accordance with increase of rainfall. The change ratio of discharged pollution load was 18.6% while inflow load only 5.8% for 5 years from 2004 to 2008 in Daejeon district. The greatest rainfall and rain days were over 2 times than the least during the period. This change in rainfall could have great effect on discharged pollution load. The analysis showed that discharged pollution load increased 2.1 times in case rainfall increased 2 times and 1.2 times in case rain days increased 2 times. Rainfall effects, therefore, should be considered to make resonable evaluation of discharged pollution load in the assessment of annual performances.

Quantifying the effects of climate variability and human activities on runoff for Vugia - Thu Bon River Basin in Central of Viet Nam

  • Lan, Pham Thi Huong;Thai, Nguyen Canh;Quang, Tran Viet;Long, Ngo Le
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.233-233
    • /
    • 2015
  • Vu Gia - Thu Bon basin is located in central Vietnam between Truong Son mountain range on the border with Lao in the west and the East Sea in the east. The basin occupies about 10,350 km2 or roughly 90% of the Quang Nam Province and includes Da Nang, a very large city with about 876,000 inhabitants. Total annual rainfall ranges from about 2,000 mm in central and downstream areas to more than 4,000 mm in southern mountainous areas. Rainfall during the monsoon season accounts for 65 to 80% of total annual rainfall. The highest amount of rainfall occurs in October and November which accounts for 40 to 50% of the annual rainfall. Rainfall in the dry season represents about 20 to 35% of the total annual rainfall. The low rainfall season usually occurs from February to April, accounting for only 3 to 5% of the total annual rainfall. The mean annual flow volume in the basin is $19.1{\times}109m 3$. Similar to the distribution of rainfall, annual flows are distinguished by two distinct seasons (the flood season and the low-flow season). The flood season commonly starts in the mid-September and ends in early January. Flows during the flood season account for 62 to 69% of the total annual water volume, while flows in the dry season comprise 22 to 38% of total annual run-off. The water volume gauged in November, the highest flow month, accounts for 26 to 31% of the total annual run-off while the driest period is April with flows of 2 to 3% of the total annual run-off. There are some hydropower projects in the Vu Gia - Thu Bon basin as the cascade of Song Bung 2, Song Bung 4, and Song Bung 5, the A Vuong project currently under construction, the Dak Mi 1 and Dak Mi 4 projects on the Khai tributary, and the Song Con project on the Con River. Both the Khai tributary and the Song Con join the Bung River downstream of SB5, although the Dak Mi 4 project involves an inter-basin diversion to Thu Bon. Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Vu Gia - Thu Bon River Basin in the central of Viet Nam were analyzed to investigate changes in annual runoff during the period of 1977-2010. The nonparametric Mann-Kendall test and the Mann-Kendall-Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. The hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.

  • PDF

밭에서의 유효우량 산정모형 개발 (Modeling Effective Rainfall for Upland Crops)

  • 정하우;김성준
    • 한국농공학회지
    • /
    • 제35권1호
    • /
    • pp.29-39
    • /
    • 1993
  • A model for estimating daily effective rainfall of upland crops was developed. The infiltration process was described by Green-Ampt infiltration model developed by Chu(1978). The model considers delayed surface ponding and surface detention storage under a uniform soil profile. The Green-Ampt parameters, that is, average hydraulic conductivity and average capillary pressure head on a sandy loam soil were determined from field experiment using Air-entry permeameter developed by Bouwer(1966). The model was verified by comparing measured and simulated surface runoff. The ratios of effective rainfall to total rainfall for red pepper, soybean, sesame and Chinese cabbage were evaluated using Borg's root growth model( 1986) respectively. The followings are a summary of this study results; 1.In a sandy loam soil average hydraulic conductivity was 3.28cm/hr and average capillary pressure head was 3.00cm. 2.The root growth of upland crops could be expressed by Borg's root growth model successively. 3.The measured and simulated surface runoff was agreed well with each other. 4.As the rainfall amount was increased, the ratio of effective rainfall to total rainfall was decreased exponentially till a certain growing period.

  • PDF

Scavenging Properties of Atmospheric Carbon by Precipitation

  • Hwang, Kyung-Chul;Ma, Chang-Jin;Cho, Ki-Chul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • 제20권E2호
    • /
    • pp.77-85
    • /
    • 2004
  • In order to investigate the scavenging property of airborne carbonaceous particles by precipitations, rainwater, snow sample, and total suspended particulate matter (TSP) were collected at a heavily industrialized urban site. Elemental carbon (EC) contents of both rainwater and snow water were deter-mined using elemental analysis system. EC concentrations in rain samples varied from 33.6 to 166.6 $\mu\textrm{g}$ L$^{-1}$ with an average 47.2 $\mu\textrm{g}$ L$^{-1}$ . On the other hand, those of snow samples in three times snow events were ranged from 122.4 to 293.3 $\mu\textrm{g}$ L$^{-1}$ . As might be expected, EC showed the significantly high scavenging rate at the initial rainfall. The average total carbon (TC) scavenging rate by washout mechanisms was 57.6% for five rainfall events. The scavenging rate of EC gradually increased in proportion to the increasing rainfall intensity and rainfall amount.

0.01 mm 급 우량계 개발에 관한 연구 (A Study on the Development of Raingauge with 0.01 mm Resolution)

  • 이부용
    • 한국환경과학회지
    • /
    • 제13권7호
    • /
    • pp.637-643
    • /
    • 2004
  • A new method of automatic recording raingauge is developed to measure rainfall with 0.01mm resolution. This use two different signals to measure rainfall more accurately compare than other raingauges. One is weight of the tipping bucket with rainfall amount and the other is pulse from tipping bucket reverse. New method applied 1 mm tipping bucket mechanism and install loadcell under tipping bucket mechanism for measuring rainfall weight. Loadcell measure weight of rainfall until 1 mm with 0.01 mm resolution and more than 1 mm than bucket reverse and pulse signal generate, after that loadcell measure weight again. The validation of new instrument was examined in the room 65 mm/hour rainfall rate total 53 mm range. There is below than 1 % error of absolute rainfall amount and 0.01 mm resolution. The field test of instrument was carried out by comparing its measured values with values recorded by weight type and standard type on June 1 2003 at Terrestrial Environmental Research Center at Tsukuba University in Tsukuba of Japan, when it has recorded total amount of 40.58 mm rainfall by standard raingauge and new raingauge recorded 41.032 mm. Same rainfall intensity pattern observed in field observation with weight type raingauge. Rainfall intensity between weight type and Lee-A type raingauge reached 0.9947 correlation in 3 minute average.