• 제목/요약/키워드: Total radiation

검색결과 2,254건 처리시간 0.029초

원전용 IC를 위한 CMOS 디지털 논리회로의 내방사선 모델 설계 및 누적방사선 손상 분석 (A Radiation-hardened Model Design of CMOS Digital Logic Circuit for Nuclear Power Plant IC and its Total Radiation Damage Analysis)

  • 이민웅;이남호;김종열;조성익
    • 전기학회논문지
    • /
    • 제67권6호
    • /
    • pp.745-752
    • /
    • 2018
  • ICs(Integrated circuits) for nuclear power plant exposed to radiation environment occur malfunctions and data errors by the TID(Total ionizing dose) effects among radiation-damage phenomenons. In order to protect ICs from the TID effects, this paper proposes a radiation-hardening of the logic circuit(D-latch) which used for the data synchronization and the clock division in the ICs design. The radiation-hardening technology in the logic device(NAND) that constitutes the proposed RH(Radiation-hardened) D-latch is structurally more advantageous than the conventional technologies in that it keeps the device characteristics of the commercial process. Because of this, the unit cell based design of the RH logic device is possible, which makes it easier to design RH ICs, including digital logic circuits, and reduce the time and cost required in RH circuit design. In this paper, we design and modeling the structure of RH D-latch based on commercial $0.35{\mu}m$ CMOS process using Silvaco's TCAD 3D tool. As a result of verifying the radiation characteristics by applying the radiation-damage M&S (Modeling&Simulation) technique, we have confirmed the radiation-damage of the standard D-latch and the RH performance of the proposed D-latch by the TID effects.

Evaluation of Dosimetric Effect and Treatment Time by Plan Parameters for Endobronchial Brachytherapy

  • Choi, Chang Heon;Park, Jong Min;Park, So-Yeon;Kang, SungHee;Cho, Jin Dong;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제28권2호
    • /
    • pp.39-44
    • /
    • 2017
  • This study aims to analyze dose distribution and treatment time of endobronchial brachytherapy (EBBT) by changing the position step size of the dwell position. A solid water phantom and an intraluminal catheter were used in the treatment plan. The treatment plans were generated for 3, 5, 7, and 10 cm treatment lengths, respectively. For each treatment length, the source position step sizes were set as 2.5, 5, and 10 mm. Three reference points were set 1 cm away from the central axis of the catheter, along the axis, for uniform dose distribution. Volumetric dose distribution was calculated to evaluate the dosimetric effect. The total radiation delivery time and total dwell time were estimated for treatment efficiency, which were increased with position step sizes. At half-life time, the differences between the position step sizes in the total radiation delivery time were 18.1, 15.4, 18.0, and 24.0 s for 3, 5, 7, and 10 cm treatment lengths, respectively. The dose distributions were more homogenous by increasing the position step sizes. The dose difference of the reference point was less than 10%. In brachytherapy, this difference can be negligible. For EBBT, the treatment time is the key factor while considering the patient status. To reduce the total treatment time, EBBT can be performed with 2.5 mm position step size.

장기 중선량률 감마선 피폭에 의한 마우스의 생존율 및 생물학적 영향 평가 (Survival Rate and Biological Effect of Chronic Medium-Dose-Rate Gamma Radiation Exposed to Mice)

  • 김재경;진영배;오수미;이윤종;성낙윤;송범석;박종흠;변의백;이주운;김재훈
    • 방사선산업학회지
    • /
    • 제7권2_3호
    • /
    • pp.155-159
    • /
    • 2013
  • Late effects of chronic exposure to gamma radiation are potential hazards to worker in radiation facilities as well as to the general public. Recently, chronic gamma radiation exposure effects have become a serious concern. Using a total of 60 mice, we studied the biological effects of medium-dose chronic exposure to gamma radiation. Sixty female 6-week-old specific pathogen free Balb/c mice were randomly divided into six groups (five groups irradiated and one non-irradiated control group). Irradiation was carried out for 7 days using gamma rays at dose rates of 119.65, 238.10, 357.14, 476.19 and $595.24mGy\;h^{-1}$ with total doses 20, 40, 60, 80 and 100 Gy. After irradiation, we determined survival rate of gamma radiation exposed mice during 1 week and 476.19 and $595.24mGy\;h^{-1}$ exposed group mice showed less 10% of survival rate. Otherwise, 119.65, 238.10 and $357.14mGy\;h^{-1}$ exposed group mice were survived each 100%, 80% and 70%. Half of survived mice after 1 week are immediately sacrifice and counted body and spleen weights. Compared with control non-irradiated group, total body weights and spleen weights isolated from 119.65, 238.10 and 357.14 irradiated group mice showed significant decreased. However, no significant alteration was observed between 119.65, 238.10 and $357.14mGy\;h^{-1}$ irradiated group. Overall, our results show for the first time that medium-dose chronic gamma radiation has the potential to stimulation of biological effects.

Reducing frame rate and pulse rate for routine diagnostic cerebral angiography: ALARA principles in practice

  • Arvin R. Wali;Sarath Pathuri;Michael G. Brandel;Ryan W. Sindewald;Brian R. Hirshman;Javier A. Bravo;Jeffrey A. Steinberg;Scott E. Olson;Jeffrey S. Pannell;Alexander Khalessi;David Santiago-Dieppa
    • Journal of Cerebrovascular and Endovascular Neurosurgery
    • /
    • 제26권1호
    • /
    • pp.46-50
    • /
    • 2024
  • Objective: Diagnostic cerebral angiograms (DCAs) are widely used in neurosurgery due to their high sensitivity and specificity to diagnose and characterize pathology using ionizing radiation. Eliminating unnecessary radiation is critical to reduce risk to patients, providers, and health care staff. We investigated if reducing pulse and frame rates during routine DCAs would decrease radiation burden without compromising image quality. Methods: We performed a retrospective review of prospectively acquired data after implementing a quality improvement protocol in which pulse rate and frame rate were reduced from 15 p/s to 7.5 p/s and 7.5 f/s to 4.0 f/s respectively. Radiation doses and exposures were calculated. Two endovascular neurosurgeons reviewed randomly selected angiograms of both doses and blindly assessed their quality. Results: A total of 40 consecutive angiograms were retrospectively analyzed, 20 prior to the protocol change and 20 after. After the intervention, radiation dose, radiation per run, total exposure, and exposure per run were all significantly decreased even after adjustment for BMI (all p<0.05). On multivariable analysis, we identified a 46% decrease in total radiation dose and 39% decrease in exposure without compromising image quality or procedure time. Conclusions: We demonstrated that for routine DCAs, pulse rate of 7.5 with a frame rate of 4.0 is sufficient to obtain diagnostic information without compromising image quality or elongating procedure time. In the interest of patient, provider, and health care staff safety, we strongly encourage all interventionalists to be cognizant of radiation usage to avoid unnecessary radiation exposure and consequential health risks.

HAUSAT-2 우주방사능 환경과 영향 분석 (HAUSAT-2 SPACE RADIATION ENVIRONMENT AND EFFECTS ANALYSIS)

  • 정지완;장영근
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2005년도 한국우주과학회보 제14권1호
    • /
    • pp.143-147
    • /
    • 2005
  • 우주시스템 연구실에서 개발 중인 HAUSAT-2의 우주방사능 환경은 포획된 양자와 전자, 태양양성자이다. 본 논문에서는 우주방사능 환경에 대해 임무기간동안의 총 피폭량을 계산하였고, 총 피폭량에 대해 HAUSAT-2에서 사용하는 부품들의 부품의 우주방사능 허용레벨 분류과정을 통해 사용가능성을 검증하였다. 또한 단일사건 발생확률을 계산하여 단일사건 발생에 대비하는 시스템을 설계에 반영하였다.

  • PDF

Radiation Effects on the Power MOSFET for Space Applications

  • Lho, Young-Hwan;Kim, Ki-Yup
    • ETRI Journal
    • /
    • 제27권4호
    • /
    • pp.449-452
    • /
    • 2005
  • The electrical characteristics of solid state devices such as the bipolar junction transistor (BJT), metal-oxide semiconductor field-effect transistor (MOSFET), and other active devices are altered by impinging photon radiation and temperature in the space environment. In this paper, the threshold voltage, the breakdown voltage, and the on-resistance for two kinds of MOSFETs (200 V and 100 V of $V_{DSS}$) are tested for ${\gamma}-irradiation$ and compared with the electrical specifications under the pre- and post-irradiation low dose rates of 4.97 and 9.55 rad/s as well as at a maximum total dose of 30 krad. In our experiment, the ${\gamma}-radiation$ facility using a low dose, available at Korea Atomic Energy Research Institute (KAERI), has been applied on two commercially available International Rectifier (IR) products, IRFP250 and IRF540.

  • PDF

한국의 지방별 평균전일사양 (Intensity of Total Mean Solar Radiation in Korea)

  • 김효경
    • 대한설비공학회지:설비저널
    • /
    • 제6권3호
    • /
    • pp.216-219
    • /
    • 1977
  • Intensity of solar radiation on a horizontal surface at 12 areas in South Korea was indicated in the last report, Vol. 5, No.3 Journal of the S. A. R. E. K. In this report, area of South Korea was devided into 4 zones in latitude, and calculated intensity of total mean solar radiation on horizontal surface, normal surface to sun rays, and vertical surface of south, north, west and east. For the 4 areas, the following data have been obtained and are indicated in each table. Intensity of total mean solar radiation for Seoul, Gimcheon, Jinju and Jeju$\cdots$Table2 thru Table 5.

  • PDF

아리랑 2호의 방사능 환경 및 영향에 관한 분석(I)- TOTAL IONIZING DOSE 영향 중심으로 - (THE ANALYSIS ON SPACE RADIATION ENVIRONMENT AND EFFECT OF THE KOMPSAT-2 SPACECRAFT(I): TOTAL IONIZING DOSE EFFECT)

  • 백명진;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.153-162
    • /
    • 2001
  • 본 논문에서는 아리랑 2호가 운용될 궤도의 우주방사능 환경 및 total ionizing dose(TID) 영향에 대하여 분석하였다. 포획된 양자의 경우 SAA(South Atlantic Anomaly) 지역에 집중되어 있음을 알 수 있었으며, TID에 영향을 미치는 우주 방사능은 포획된 양자 및 전자와 태양양자임을 알 수 있었다. 저 에너지 입자는 알루미늄 차단 구조물을 이용하여 방사능 영향을 효과적으로 차단할 수 있음을 알 수 있었으나, 고 에너지 입자의 경우 구조물의 두께를 증가하여도 방사능 영향을 효과적으로 차단할 수 없음을 알 수 있었다. 아리랑 2호의 임무수명기간 동안 전자부품에 계속적으로 피폭되는 전체 방사량을 알루미늄 차단두께의 함수로 나타내었으며, 이 값들은 아리랑 2호의 전자부품의 선택기준 및 위성체 또는 구성품의 구조물 두께를 설정할 수 있는 기준으로 제시하였다.

  • PDF

NaI 스펙트럼으로부터 인공방사선 조사선량의 계산 (Calculation of Man-made Radiation Exposure Rate from NaI Spectrum)

  • 이모성
    • Journal of Radiation Protection and Research
    • /
    • 제26권2호
    • /
    • pp.113-117
    • /
    • 2001
  • NaI 스펙트럼으로부터 조사선량을 계산하는 에너지대 방법은 $1300{\sim}3000keV$ 영역의 에너지 스펙트럼을 사용하여 조사선량을 계산하기 때문에 자연방사선만의 조사선량이 계산되어지지만, 총에너지 방법은 $150{\sim}3400keV$ 영역의 에너지 스펙트럼을 사용하기 때문에 인공방사선의 조사선량도 포함하여 계산한다. 따라서 총에너지 방법에 의한 조사선량과 에너지대 방법에 의한 조사선량의 차이는 인공방사선에 의한 조사선량이 될 것이다. 본 연구에서는 인공방사선이 없는 지역에서 단지 기상요인에 의해서 조사선량 변동이 심한 기간동안 NaI 검출기로 스펙트럼을 측정하였다. 이와 같이 측정한 스펙트럼에 대해서 두 방법으로 계산한 조사선량률들은 통계적 변동 ${\pm}0.3{\mu}R\;h^{-1}$ 이내에서 잘 일치하였다. 결과적으로 두 방법에 의해 계산된 조사선량값이 차이가 있다면 그것은 인공방사선에 의한 조사선량으로 해석할 수 있을 것이다.

  • PDF

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.