• Title/Summary/Keyword: Total flow velocity

Search Result 381, Processing Time 0.032 seconds

GENE EXPRESSION AFTER THE APPLICATION OF THE FLUID-INDUCED SHEAR STRESS ON THE GINGIVAL FIBROBLAST (유체에 의해 유발된 전단력이 치은 섬유아세포 유전자 발현 변화에 미치는 영향에 관한 연구)

  • Jeong, Mi-Hyang;Choi, Je-Yong;Chae, Chang-Hoon;Kim, Seong-Gon;Nahm, Dong-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.5
    • /
    • pp.424-430
    • /
    • 2005
  • The oral cavity is humid environment mainly due to the continuous salivary flow. The reaction of oral mucosa to fluid flow is important for homeostasis and pathogenesis. The objective of this study is the screening the change of gene expression after the application of fluid induced shear stress (FISS) on the gingival fibroblast using cDNA microarray assay. The immortalized human gingival fibroblasts were grown and FISS was applied using a cone viscometer at a rotational velocity of 40 rpm, respectively for periods of 2 and 4 hours. The synthesis of cDNA was done from the extracted total RNA and cDNA microarray assay was done subsequently. The genes that showed over 1.6 in the Cy3/Cy5 or the Cy5/Cy3 value were regarded as genes influenced significantly by the FISS application ion (/M/>0.7). The " RUNX-1" was increased its expression in 2 hours group and " RUN and SH3 domain containing 1" was increased its expression in 4 hours group. The "CC020415", "cyclin L1", "interferon regulatory factor1", "early growth response 1", "immediate early response 2", and "immediate early response 3" genes were increased their expression in 2 and 4 hours after FISS application. In conclusion, we could find many genes that were probably related to the FISS application. Interestingly, most of them were placed in similar molecular pathways and these findings improve the reliability of chip data and usefulness in overall screening. From this experiment, we could find many items for further study and it will make improvement in the understanding of intracellular events in response to FISS.

The Effect of Reynolds Number on the Three-Dimensional Flow Measurements with a Two-Stage Cone-Type Five-Hole Probe in a Non-Nulling Mode (Reynolds 수가 2단 원추형 5공프로브를 이용한 3차원 유동 측정에 미치는 영향 - 저속 유동장에서의 보정 결과 -)

  • Lee, Sang-U;Jeon, Sang-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.27-38
    • /
    • 2002
  • The effects of Reynolds number on the non-nulling calibrations of a cone-type ave-type probe in low-speed flows have been investigated at Reynolds numbers of 2.04$\times$10$^3$, 4.09$\times$10$^3$and 6.13$\times$10$^3$. The calibration is conducted at the pitch and yaw angles in ranges between -35 degrees and 35 degrees with an angle interval of 5 degrees. In addition to the calibration coefficients, reduced pitch and yaw angles, static and total pressures, and velocity magnitude are obtained through a typical non-nulling reduction procedure. The result shows that each calibration coefficient, in general, is a function of both the pitch and yaw angles, so that the pre-existing calibration data in a nulling mode are not enough in accounting far the full non-nulling calibration characteristics. Due to interference of the probe stem, the calibration coefficient are more sensitive to Reynolds number at positive pitch angles than at negative ones. The calibration data reduced in this study may serve as a guide line in the estimation of uncertainty intervals resulted from the Reynolds number effects at low Reynolds numbers.

Study on the Effects of Flows on the Acceleration of the Grooving Corrosion in the ERW Pipe (ERW강관에서 홈부식의 가속화에 미치는 유동의 영향에 관한 연구)

  • Kim, Jae-Seong;Kim, Yong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.85-91
    • /
    • 2008
  • The grooving corrosion is caused mainly by the different microstructures between the matrix and weld which is formed during the rapid heating and cooling cycle in welding. By this localized corrosion reaction of pipes, it evolves economic problems such as the early damage of industrial facilities and pipe lines of apartment, and water pollution. So lots of researches were carried out already about grooving corrosion mechanism of ERW carbon steel pipe but there is seldom study for water hammer happened by fluid phenomenon and corrosion rate by flow velocity. In this study, the analysis based on hydrodynamic and fracture mechanics was carried out. ANSYS, FLUENT and STAR-CD were used for confirmation of flow phenomenon and stress on the pipe. As the results, fatigue failure is able to be happened by water hammer and grooving corrosion rate is increased cause by turbulent. Grooving corrosion is happened on the pipe, then friction loss of fluid is occurred from corroded part. Erosion can be happened enough in corroded region of microscopic size that wear "V" form. Also pipe is able to be damaged by water hammer effects because of corroded region is general acting as a notch effects. Corrosion depth was more than half of total thickness, it can be damaged from water hammer pressure.

Vorticity Based Analysis of the Viscous Flow around an Impulsively Started Cylinder (와도를 기저로 한 초기 순간 출발하는 실린더 주위의 점성유동해석)

  • Kwang-Soo Kim;Jung-Chun Suh
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • This paper presents a vorticity-based numerical method for analyzing an incompressible Newtonian viscous flow around an impulsively started cylinder. The Navier-Stockes equations have a natural Helmholtz decomposition. The vorticity transport equation and the pressure equation are derived from this decoupled form. The associated boundary conditions are dynamic for the vorticity and pressure variables representing the coupling relation between them and the force balance on the wall. The various numerical treatments for solving the governing equations are introduced. According to Wu et al.(1994), the boundary conditions are decoupled, keeping the dynamic relation between vorticity and pressure. The vorticity transport equation is formulated by FVM and TVD(Total Variation Diminishing) scheme is used for the convection term. An integral approach similar to the panel method is used to obtain the velocity field for a given vorticity field and the pressure field, instead of the conventional differential approaches. In the numerical process, the structured grid is generated. The results are compared to existing numerical and analytic results for the validity of the present method.

  • PDF

Fish Community and Habitat Environmental Characteristics in the Gudam Wetland

  • Chu, Yeounsu;Cho, Kwang-Jin;Kim, Hui-Seong;Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.3 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this study, we investigated the water quality and fish community of the Gudam Wetland, a riverine wetland in the middle-upper reaches of the Nakdong River, during March-October 2020. The main results were as follows: average annual flow rate: 45.0±23.7 m3/s, flow velocity: 0.4±0.3 m/s, water depth: 1.4±0.4 m, water temperature: 17.5±0.8℃, pH: 7.8±0.2, electrical conductivity: 121.6±19.0 ㎲/cm, dissolved oxygen concentration: 11.4±0.9 mg/L, suspended solids concentration: 3.8±2.0 mg/L, and the water quality was classified as Ia (very good). A total of 754 individual fish belonging to 4 orders, 7 families, and 19 species were investigated. Cyprinidae was the dominant group, with 13 species. The dominant species was Zacco platypus (39.3%), followed by Pseudogobio esocinus (17.5%). There were 8 (42.1%) endemic Korean species and 1 exotic species, Micropterus salmoides. Four species were carnivores, six were insectivores, and nine were omnivores. Regarding tolerance to environmental changes, 6 species were tolerant, 11 had intermediate tolerance, and 2 were sensitive. Fish community analysis revealed dominance of 0.57, diversity of 2.04, evenness of 0.69, and richness of 2.72, indicating a diverse and stable fish community. The fish assessment index showed that the assessment class was B (average 62.5), which was higher than that of major streams of the Nakdong River (class C). For sustainable conservation of the Gudam Wetland, management strategies such as minimizing aggregate collection and preventing inflow of non-point pollutants are required.

Deformation of Cage Nets against Flow Velocity and Optimal Design Weight of Sinker (우리형 그물의 유속에 따른 변형 및 적정 침자량)

  • 김태호;김재오;김대안
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • In order to investigate the optimal design weight of sinkers for preventing cage net from deforming in current, the model experiment on 2 types of square cage nets with different S sub(n)/S, the ratio of total area of netting projected to the perpendicular to the water flow S sub(n) to wall area of netting S, and 4 kinds of sinkers was carried out in circulation water channel. The model cage nets were made in 1/10 scale and the total weight in water of 4 sinkers attached to each corner of their bottom frames was 18, 54, 90, and 126g, respectively equivalent to 0.1, 0.3, 0.5, and 0.7 kg per unit area of prototype net. The results obtained can be summarizes as follows; Due to the deformation of each net where it was lifted towards the surface in severe conditions, its volume was reduced. This depended highly on the weight of sinkers placed in the bottom corner of cage nets, even if the variation of S sub(n)/S had a little effect on their deformation in current less than 0.4 m/s. In addition, it was observed that the total weight of sinkers for preventing the net from deforming to the extent of less than 50% inside its initial volume was 31 to 245 kg in the range of 0.3 to 0.6 m/s and the adequate design weight of sinker was approximately 0.5 kg per its unit area.

  • PDF

Change of Benthic Macroinvertebrates Community Composition Following Summer Precipitation Variance (여름철 집중 강우량 변동에 의한 저서성 대형무척추동물 군집구성의 변화)

  • Hong, Cheol;Kim, Won-Seok;Kim, Jin-Young;Noh, Seong-Yu;Park, Ji-Hyung;Lee, Jae-Kwan;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.348-357
    • /
    • 2019
  • To investigate the changes of dominant species of benthic macroinvertebrates following summer precipitation variance, we surveyed twenty five sites of the main Seomjin River in May and September in 2014 and 2015. The temperature, precipitation, water quality factors and substrate composition, water depth and flow velocity, which are important factors in benthos habitat environment, were collected and measured. There is not much difference of the cumulative precipitation (CP) between 2014 (2,322.1 mm) and 2015 (2,371.0 mm) in May. However CP in september was decreased by more than half in 2015 (3,726.1 mm) than 2014 (7,678.2 mm). Due to washing effect by summer precipitation, total number of species and individuals for benthic macroinvertebrates were higher in May than in September. Chironomidae spp. and Choroterpes altioculus were dominated in May, Ecdyonurus levis, Ecdyonurus kibunensis were dominated in September. As a result of correlation analysis between community indices and environment factors, it was found that there is a significant correlation with flow velocity and substrate compositions. According to the results of cluster analysis and PCA based on environment fators and dominant species of benthic macroinvertebrates in Seomjin River, it was divided into four groups following CP and MT. Ecdyonurus levis and Ecdyonurus kibunensis reflect the effect of the decrease in summer precipitation.

Comparison of the Effects of Continuous Erosion Control Dams on Benthic Macroinvertebrate Communities Before and After the Rainy Season (연속적인 사방댐이 장마 전·후 저서성 대형무척추동물 군집에 미치는 영향 비교)

  • An, Chae Hui;Han, Jung Soo;Hyun, Jae Bin;Choi, Jun Kil;Lee, Hwang Goo
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.1
    • /
    • pp.54-63
    • /
    • 2021
  • This study aimed to investigate changes in benthic macroinvertebrate communities caused by erosion control dams using data obtained from three erosion control dams in Wonju, Gangwon Province, before and after the rainy season. Surveys were conducted four times from March to September 2019, and survey points were continuously selected during the installation of closed-type and open-type dams. A total of eight points from the upstream and downstream regions of each dam type were selected. The flow velocity of both the closed and open types increased, but the closed type exhibited a relatively higher flow velocity than the open type. Benthic macroinvertebrate species and individuals mostly decreased after the rainy season. A relatively large number of species and individuals were found upstream of the closed-type dam. An analysis of the ephemeroptera-plecoptera-trichoptera groups showed relatively reduced ephemeroptera in the closed-type dam and reduced trichoptera in the open-type dam. The periods before and after the rainy season could be divided based on the results of a similarity analysis. The open type showed relatively minimal changes before and after the rainy season.

A Study on the Improvement of Efficiency of Heat Transfer of Double Pipe Heat Exchanger with Helical Insert Device on Cooling of a Fuel Cell (연료전지 냉각용 헬리컬 인서트디바이스 이중관열교환기의 열전달 성능 향상에 관한 연구)

  • CHO, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.6
    • /
    • pp.1872-1879
    • /
    • 2015
  • The present study was conducted on the improvement of the heat transfer performance of double pipe heat exchangers with helical insert device. Double pipe heat exchangers with helical insert device were studied for improvement of the heat transfer performance of double pipe heat exchangers with helical insert device and plain double pipe heat exchangers were also studied to comparatively analyze heat transfer performance. Experimental results were derived on changes in the Reynold's numbers of the cooling water flowing in helical and plain double pipe heat exchangers and changes in the heat flux of the air. Thereafter, to verify the reliability of the experimental results, the theoretical total energy and the experimental total energy were comparatively analyzed and the following results were derived. The thermal energy of the calorie lost by the hot air and that of the calorie obtained by the cooling water were well balanced. The experiments of plain double pipe heat exchangers and double pipe heat exchangers with helical insert device were conducted under normal conditions and the theoretical overall heat transfer coefficient value and the experimental overall heat transfer coefficient value coincided well with each other. In both plain double pipe heat exchangers and double pipe heat exchangers with helical insert device, heat transfer rates increased as the cooling water flow velocity increased. Under the same experimental conditions, the heat transfer performance of double pipe heat exchangers with helical insert device was shown to be higher by approximately 1.5 times than that of plain double pipe heat exchangers.

Application of Hybrid SNCR/SCR process for Improved N Ox Removals Efficiency of SNCR (SNCR의 N Ox 제거효율 향상을 위한 Hybrid SNCR/SCR 공정 응용)

  • 최상기;최성우
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.997-1004
    • /
    • 2003
  • The objective of this research was to test whether, under controlled laboratory conditions, hybrid SNCR/SCR process improves N $O_{x}$ removal efficiency in comparison with the SNCR only. The hybrid process is a combination of a redesigned existing SNCR with a new downstream SCR. N $O_{x}$ reduction experiments using a hybrid SNCR/SCR process have been conducted in simple NO/N $H_3$/ $O_2$ gas mixtures. Total gas flow rate was kept constant 4 liter/min throughout the SNCR and SCR reactors, where initial N $O_{x}$ concentration was 500 ppm in the presence of 5% or 15% $O_2$. Commercial catalysts, $V_2$ $O_{5}$ -W $O_3$-S $O_4$/Ti $O_2$, were used for SCR N $O_{x}$ reduction. The residence time and space velocity were around 1.67 seconds and 2,400 $h^{-1}$ or 6000 $h^{-1}$ in SNCR and SCR reactors, respectively. N $O_{x}$ reduction of the hybrid system was always higher than could be achieved by SNCR alone at a given value of N $H_{3SLIP}$. Optimization of the hybrid system performance requires maximizing N $O_{x}$ removal in the SNCR process. An analysis based on the hybrid system performance in this lab-scale work indicates that a equipment with N $O_{xi}$ =500 ppm will achieve a total N $O_{x}$ removal of about 90 percent with N $H_{3SLIP}$ $\leq$ 5 ppm only if the SNCR N $O_{x}$ reduction is at least 60 percent. A hybrid SNCR/SCR process has shown about 26∼37% more N $O_{x}$ reduction than a SNCR unit process in which a lower temperature of 85$0^{\circ}C$ turned out to be more effective.be more effective.