• Title/Summary/Keyword: Total decay rate

Search Result 80, Processing Time 0.024 seconds

Development of CFD model for Predicting Ventilation Rate based on Age of Air Theory using Thermal Distribution Data in Pig House (돈사 내부 열환경 분포의 공기연령 이론법 적용을 통한 전산유체역학 환기 예측 모델 개발)

  • Kim, Rack-woo;Lee, In-bok;Ha, Tae-hwan;Yeo, Uk-hyeon;Lee, Sang-yeon;Lee, Min-hyung;Park, Gwan-yong;Kim, Jun-gyu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.61-71
    • /
    • 2017
  • The tracer gas method has an advantage that can estimate total and local ventilation rate by tracing air flow. However, the field measurement using tracer gas has disadvantages such as danger, inefficiency, and high cost. Therefore, the aim of this study was to evaluate ventilation rate in pig house by using the thermal distribution data rather than tracer gas. Especially, LMA (Local Mean Age), which is an index based on the age of air theory, was used to evaluate the ventilation rate in pig house. Firstly, the field experiment was conducted to measure micro-climate inside pig house, such as the air temperature, $CO_2$ concentration and wind velocity. And then, LMA was calculated based on the decay of $CO_2$ concentration and air temperature, respectively. This study compared between LMA determined by $CO_2$ concentration and air temperature; the average error and root mean square error were 3.76 s and 5.34 s. From these results, it was determined that thermal distribution data could be used for estimation of LMA. Finally, CFD (Computational fluid dynamic) model was validated using LMA and wind velocity. The mesh size was designed to be 0.1 m based on the grid independence test, and the Standard $k-{\omega}$ model was eventually chosen as the proper turbulence model. The developed CFD model was highly appropriate for evaluating the ventilation rate in pig house.

Effects of Shelf Temperature on the Quality of Red Pepper (Capsicum annuum L.) after Low Temperature Storage (홍고추의 저온저장 후 모의 유통온도가 품질에 미치는 영향)

  • Park, Sung Min;Kang, Won Hee;Lee, Yun Soo;Kim, Il Seop;Jeong, Cheon Soon
    • Horticultural Science & Technology
    • /
    • v.19 no.4
    • /
    • pp.526-529
    • /
    • 2001
  • The study was conducted to investigate quality changes of red pepper by different shelf temperatures after storage at $7^{\circ}C$ for 30 days. Red pepper fruits produced high volume of $C_2H_4$ and $CO_2$ when alternating temperatures exceeded $10^{\circ}C$. Total sugar contents were not different among all the treatments. In contrast, sucrose content decreased about half at higher shelf temperature conditions than at $7^{\circ}C$. Capsaicinoid content was not influenced by alternating temperature, but ascorbic acid content tended to decrease by high shelf temperature after storage at $7^{\circ}C$. Decay did not occur under $13^{\circ}C$, while it occurred in 22.2% of hits at $15^{\circ}C$ and 68.8% at room temperature, respectively. From this results, it is suggested that the optimum shelf temperature of red pepper after low temperature storage should be under $13^{\circ}C$ and that fruits of red pepper stored at $7^{\circ}C$ for 30 days could be sold within 10 days on the shelf.

  • PDF

Effects of Storage Conditions on Qualities of Buttercup Squash (Kabocha) (밤호박의 저장 온도와 습도가 품질에 미치는 효과)

  • Han, Jin-Suk;Chung, Moon-Cheol;Kim, Sung-Ran
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.6
    • /
    • pp.644-651
    • /
    • 2007
  • To establish the optimum conditions for storing buttercup squash, we examined the effectiveness of several storage methods and the quality of the squash under various storage conditions, including temperature (12 and $20^{\circ}C$) and relative humidity (20, 40, 60, and 80%). The spoiling rate of the squash was affected more by the storage temperature than the relative humidity, and the squash stored at $20^{\circ}C$ started to be deteriorated after 20 days of storage. At $20^{\circ}C$, soluble solid content gradually increased until 20 days of storage, and then it tended to decrease. The L-value had a tendency to increase with days of storage, and the a- and b-value also increased after 40 days. In addition, the color changes were great when the squash was stored at high temperature and high relative humidity. The total pectin content increased until 20 days at $20^{\circ}C$, and then it decreased, but less change was observed in the squash stored at $12^{\circ}C$. Overall, the results showed that storage at $20^{\circ}C$ after field curing resulted in excessive weight loss, color loss and poor eating quality, as well as a high level of decay (approximately 70%) after 40 days. However, the squash stored at $12^{\circ}C$ and 60% RH (relative humidity) showed less degreening and had a reduced level of decay, below 10%.

Characteristics of Channelbed and Woody Debris on Mountainous Stream (산지급류소하천(山地急流小河川)에 있어서 하상미지형(河床微地形)과 유목(流木) 특성(特性))

  • Chun, Kun-Woo;Kim, Min-Sik;Park, Wan-Geun;Ezaki, Tsugio
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.69-79
    • /
    • 1997
  • The purpose of this study is to acquire essential data to reduce the amount of woody debris resulted from the debris flow. This research examined topographic characteristics of the channelbed affecting generation, movement and storage of woody debris and woody characteristics related to number, sizes, shapes, decay, storage direction to mountainous stream. 1. The number of woody debris had a tendency to increase in proportion to stream width, but it was hardly affected by longitudinal gradient of stream. Especially, the greater amount of woody debris was stored at wide section of the stream with compound channel, and it was found in deposits of channelbed rather than in the present channel. 2. Total woody debris over 10cm in diameter and over 2m in length was 402 units and storage number was 35.3 units per 100m of stream. Average diameter of breast height and length were 14cm and 4m, respectively. The woody debris appeared shorter in length and greater in diameter at down-stream than up-stream. 3. Since woody debris met sediments and bed-materials of great roughness in moving, the greater amount of woody debris without root was found in up-stream and down-stream, but deformed woody debris was discovered in upper stream. Decay of woody debris was more severe in down-stream and woody debris on rotting process was found down-stream. 4. Storage direction of woody debris was mainly parallel to center line of stream, and rate of parallel and perpendicularity was 276 and 126 units, respectively. But, as woody debris storing to the perpendicular direction was unstable, the traveling debris could easily be stored. Therefore, some counterplan was required to prevent the traveling woody debris. 5. Tree species of woody debris was mainly larch, which occupied about two third of total woody debris(256 units). The woody debris of larch is easy to move due to hitting of channelbed materials or lower channelbed fluctuation because the lower part of larch is weaker than its upper part. Therefore, the section of the tree species planting in the riparian vegetation needs much more carefulness.

  • PDF

Standard Measurement Procedure for Soil Radon Exhalation Rate and Its Uncertainty

  • Seo, Jihye;Nirwono, Muttaqin Margo;Park, Seong Jin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.43 no.1
    • /
    • pp.29-38
    • /
    • 2018
  • Background: Radon contributing about 42% of annual average dose, mainly comes from soil. In this paper, standard measurement procedures for soil radon exhalation rate are suggested and their measurement uncertainties are analyzed. Materials and Methods: We used accumulation method for estimating surface exhalation rate. The closed-loop measurement system was made up with a RAD7 detector and a surface chamber. Radon activity concentrations in the system were observed as a function of time, with data collection of 5 and 15-minute and the measurement time of 4 hours. Linear and exponential fittings were used to obtain radon exhalation rates from observed data. Standard deviations of measurement uncertainties for two approaches were estimated using usual propagation rules. Results and Discussion: The exhalation rates (E) from linear approach, with 30 minutes measurement time were $44.8-48.6mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.14-2.32atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with relative measurement uncertainty of about 10%. The contributions of fitting parameter A, volume (V) and surface (S) to the estimated measurement uncertainty of E were 59.8%, 30.1% and 10.1%, in average respectively. In exponential fitting, at 3-hour measurement we had E ranged of $51.6-69.2mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.46-3.30atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with about 15% relative uncertainty. Fitting with 4-hour measurement resulted E about $51.3-68.2mBq{\cdot}m^{-2} {\cdot}s^{-1}$ or $2.45-3.25atom{\cdot}cm^{-2}{\cdot}s^{-1}$ with 10% relative uncertainty. The uncertainty contributions in exponential approach were 75.1%, 13.4%, 8.7%, and 2.9% for total decay constant k, fitting parameter B, V, and S, respectively. Conclusion: In obtaining exhalation rates, the linear approach is easy to apply, but by saturation feature of radon concentrations, the slope tends to decrease away from the expected slope for extended measurement time. For linear approach, measurement time of 1-hour or less was suggested. For exponential approach, the obtained exhalation rates showed similar values for any measurement time, but measurement time of 3-hour or more was suggested for about 10% relative uncertainty.

The Analysis of Main Factors Which Impact on Operation Rate and Power Production of Landfill Gas Power Plant (매립가스 발전시설의 가동률 및 발전량에 미치는 주요 영향요소 분석)

  • Chun, Seung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.128-134
    • /
    • 2016
  • An analysis of the main factors and its degree of impact on power production is performed against the landfill gas power plant in S landfill site. The number of normal operation (50 MWh & 24 hr) days was 70.9% to the total number of operation days from 2007 to 2014, and the percentage of the actual power production was 79.3% of 3,428,400 MW which is the theoretical maximum estimation. The ratio of factors that accounted for the efficiency of power production are: 44.0% of repairing of the defect and regular servicing, 37.4% of cut-down operation due to hydrogen sulfide, and 18.6% of air pre-heater washing, respectively. Yet, considering that the cut-down operation due to hydrogen sulfide was carried out for only two years, the high concentration of hydrogen sulfide was the most influential factors on landfill gas power production. The long-term power production was analyzed as 35.9 MWh in 2018, and the constant drop is anticipated, resulting in 16.6 MWh by 2028, and under 8.4 MWh in 2038.

Sensitivity Analyses for Maximum Heat Removal from Debris in the Lower Head

  • Kim, Yong-Hoon;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.395-409
    • /
    • 2000
  • Parametric studies were performed to assess the sensitivity in determining the maximum in-vessel heat removal capability from the core material relocated into the lower plenum of the reactor pressure vessel (RPV)during a core melt accident. A fraction of the sensible heat can be removed during the molten jet delivery from the core to the lower plenum, while the remaining sensible heat and the decay heat can be transported by rather complex mechanisms of the counter-current flow limitation (CCFL) and the critical heat flux (CHF)through the irregular, hemispherical gap that may be formed between the freezing oxidic debris and the overheated metallic RPV wall. It is shown that under the pressurized condition of 10MPa with the sensible heat loss being 50% for the reactors considered in this study, i.e. TMI-2, KORI-2 like, YGN-3&4 like and KNGR like reactors, the heat removal through the gap cooling mechanism was capable of ensuring the RPV integrity as much as 30% to 40% of the total core mass was relocated to the lower plenum. The sensitivity analysis indicated that the cooling rate of debris coupled with the sensible heat loss was a significant factor The newly proposed heat removal capability map (HRCM) clearly displays the critical factors in estimating the maximum heat removal from the debris in the lower plenum. This map can be used as a first-principle engineering tool to assess the RPV thermal integrity during a core melt accident. The predictive model also provided ith a reasonable explanation for the non-failure of the test vessel in the LAVA experiments performed at the Korea Atomic Energy Research Institute (KAERI), which apparently indicated a cooling effect of water ingression through the debris-to-vessel gap and the intra-debris pores and crevices.

  • PDF

Ecological Studies on the Montane Grassland of Mt. Soback in Korea (소백산 산지초원의 생태학적 연구 II. 물질생산과 염류순환)

  • Kim, Joon Ho;Hyeong Tae Mun
    • The Korean Journal of Ecology
    • /
    • v.5 no.4
    • /
    • pp.204-210
    • /
    • 1982
  • Comparative study of the biomass productioin and the cyclings of nitrogen, phosphorus and potassium was carried out on the east and the northwest facing slope in the montane grassland of Mt. Soback. The maximum productin during the growing season in the east and the northwest slope were 1, 150g/m2.yr, and 755g/m2.yr. in the August, respectively. The positive correlation was appearent between biomass production and A-layer depth of the soil and the correlation coefficient (r=.964) was very significant at 1% level. In the above ground materials, the nutrients contents were high at the early of the growing season but decreased gradually. In roots, however, there are no significant trend throughout the growing season. Total amounts of minerals uptaken by plants during the growing season in the east and the northwest site were 18.20 and 10.66g/m2.yr for N, 0.06 and 0.03g/m2.yr for P, 0.23 and 0.11g/m2.yr for K, respectively. the minerals returned to the soil by litter decomposition and roots decay in the east and the northwest site were 16.19 and 9.62g/m2.yr for N, 0.046 and 0.021g/m2.yr for P, 0.211 and 0.099g/m2.yr for K, respectively. The turnover the rate (absorbed/returned) of the nutrients in the east and the northwest site were 1.13 and 1.14 for N, 1.30 and 1.43 for P, 1.09 and 1.11 for K, and the absorption rates of minerals were 0.39 and 0.29% for N, 3.16 and 1.88% for P, 0.91 and 0.57% for K, respectively.

  • PDF

Suggestion of A Practical Simple Calculation Method for Safe Transportation Time after Radioactive Iodine Treatment in Patients with Thyroid Cancer (갑상선암 환자에서 방사성옥소치료 후 안전하게 이동할 수 있는 시간을 계산하기 위한 실용적인 간편계산법 제안)

  • Park, Seok-Gun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3919-3925
    • /
    • 2015
  • When a patient with thyroid cancer is released from isolation after I-131 treatment and return to home using a vehicle, travel time should be controlled to reduce the amount of radiation to accompanying person. As the calculation of appropriate travel time is difficult, there is no patient-specific guideline until now. If we assume that there is no excretion and no physical decay during the relatively short travel time, calculation become quite simple; total radiation dose = dose rate ${\times}$ travel time. Results of this simple calculation and conventional calculation were compared using datum from 120 patients. Travel time calculated by simple method was 56% of conventional method in 0.3 m, 91% in 0.5 m and 96% in 1 m. Simple method was safe. It can be applied easily and also can be applied to the patients with hyperthyroidism treated by I-131.

The Production and Decomposition of Litters in Miscanthus sinensis and Arundinella hitra Grasslands (억새와 새 초지에 있어서 낙엽의 생산과 분해에 관하여)

  • 장남기;이성규;김형기;김성하
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.4 no.2
    • /
    • pp.127-132
    • /
    • 1983
  • An investigation was performed to reveal the relation between production and decomposition of the Miscanthus sinensis and Arundinella hirta grasslands in Mt. Kwanak. 1. The total annual litter productions of M. sinensis grassland A, B and A, hirta grassland were 2,267.12, 943.44 and 1,228.45 g/m$^{2}$, respectively. 2. The decay constants of litters of M. sinensis grassland A, B and A. hirta grassland were 0.732, 0.411 and 0.877. 3. The time required for the decomposition of half of the accumulated organic matter of M. sinensis A,B and 4. hirta were 0.9, 1.7 and 0.8 years, for 95% of elimination 4.1, 7.3 and 3.4 years, and for 99% of elimination 6.8, 12.2 and 5.7 years respectively. 4. The decomposition rate of grass litters was affected by the soil water content and grass species.

  • PDF