• Title/Summary/Keyword: Total Radiance

Search Result 34, Processing Time 0.022 seconds

Investigation of SO2 Effect on TOMS O3 Retrieval from OMI Measurement in China (OMI 위성센서를 이용한 중국 지역에서 TOMS 오존 산출에 대한 이산화황의 영향 조사 연구)

  • Choi, Wonei;Hong, Hyunkee;Kim, Daewon;Ryu, Jae-Yong;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.629-637
    • /
    • 2016
  • In this present study, we identified the $SO_2$ effect on $O_3$ retrieval from the Ozone Monitoring Instrument (OMI) measurement over Chinese Industrial region from 2005 through 2007. The Planetary boundary layer (PBL) $SO_2$ data measured by OMI sensor is used in this present study. OMI-Total Ozone Mapping Spectrometer (TOMS) total $O_3$ is compared with OMI-Differential Optical Absorption Spectrometer (DOAS) total $O_3$ in various $SO_2$ condition in PBL. The difference between OMI-TOMS and OMI-DOAS total $O_3$ (T-D) shows dependency on $SO_2$ (R (Correlation coefficient) = 0.36). Since aerosol has been reported to cause uncertainty of both OMI-TOMS and OMI-DOAS total $O_3$ retrieval, the aerosol effect on relationship between PBL $SO_2$ and T-D is investigated with changing Aerosol Optical Depth (AOD). There is negligible aerosol effect on the relationship showing similar slope ($1.83{\leq}slope{\leq}2.36$) between PBL $SO_2$ and T-D in various AOD conditions. We also found that the rate of change in T-D per 1.0 DU change in PBL, middle troposphere (TRM), and upper troposphere and stratosphere (STL) are 1.6 DU, 3.9 DU and 4.9 DU, respectively. It shows that the altitude where $SO_2$ exist can affect the value of T-D, which could be due to reduced absolute radiance sensitivity in the boundary layer at 317.5 nm which is used to retrieve OMI-TOMS ozone in boundary layer.

Development the Geostationary Ocean Color Imager (GOCI) Data Processing System (GDPS) (정지궤도 해색탑재체(GOCI) 해양자료처리시스템(GDPS)의 개발)

  • Han, Hee-Jeong;Ryu, Joo-Hyung;Ahn, Yu-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.239-249
    • /
    • 2010
  • The Geostationary Ocean Color Imager (GOCI) data-processing system (GDPS), which is a software system for satellite data processing and analysis of the first geostationary ocean color observation satellite, has been developed concurrently with the development of th satellite. The GDPS has functions to generate level 2 and 3 oceanographic analytical data, from level 1B data that comprise the total radiance information, by programming a specialized atmospheric algorithm and oceanic analytical algorithms to the software module. The GDPS will be a multiversion system not only as a standard Korea Ocean Satellite Center(KOSC) operational system, but also as a basic GOCI data-processing system for researchers and other users. Additionally, the GDPS will be used to make the GOCI images available for distribution by satellite network, to calculate the lookup table for radiometric calibration coefficients, to divide/mosaic several region images, to analyze time-series satellite data. the developed GDPS system has satisfied the user requirement to complete data production within 30 minutes. This system is expected to be able to be an excellent tool for monitoring both long-term and short-term changes of ocean environmental characteristics.

Uncertainty Estimation of Single-Channel Temperature Estimation Algorithm for Atmospheric Conditions in the Seas around the Korean Peninsula (한반도 주변해역 대기환경에 대한 싱글채널 온도추정 알고리즘의 불확도 추정)

  • Jong Hyuk Lee;Kyung Woong Kang;Seungil Baek;Wonkook Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.355-361
    • /
    • 2023
  • Temperature of the Earth's surface is a crucial physical variable in understanding weather and atmospheric dynamics and in coping with extreme heat events that have a great impact on living organismsincluding humans. Thermalsensors on satellites have been a useful meansfor acquiring surface temperature information for wide areas on the globe, and thus characterization of its estimation uncertainty is of central importance for the utilization of the data. Among various factors that affect the estimation, the uncertainty caused by the algorithm itself has not been tested for the atmospheric environment of Korean vicinity. Thisstudy derivesthe uncertainty of the single-channel algorithm under the local atmospheric and oceanic conditions by using reanalysis data and buoy temperature data collected around Korea. Atmospheric profiles were retrieved from two types of reanalysis data, the fifth generation of European Centre for Medium-Range Weather Forecasts reanalysis of the global climate and weather (ERA5) and Modern-Era Retrospective analysis for Research and Applications-2 (MERRA-2) to investigate the effect of reanalysis data. MODerate resolution atmospheric TRANsmission (MODTRAN) was used as a radiative transfer code for simulating top of atmosphere radiance and the atmospheric correction for the temperature estimation. Water temperatures used for MODTRAN simulations and uncertainty estimation for the single-channel algorithm were obtained from marine weather buoyslocated in seas around the Korean Peninsula. Experiment results showed that the uncertainty of the algorithm varies by the water vapor contents in the atmosphere and is around 0.35K in the driest atmosphere and 0.46K in overall, regardless of the reanalysis data type. The uncertainty increased roughly in a linear manner as total precipitable water increased.

Photosynthetic Characteristics and Chlorophyll Content of Rhododendron micranthum by the Natural Habitat (자생지에 따른 꼬리진달래의 광합성 특성 및 엽록소 함량)

  • Kim, Nam-Young;Lee, Kyeong-Cheol;Han, Sang-Sub;Lee, Hee-Bong;Park, Wan-Geun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.2
    • /
    • pp.147-152
    • /
    • 2012
  • This study was conducted to investigate the photosynthetic R. micranthum by natural habitats. In the results, natural habitats didn't affect values of light saturated point, light compensation point and photosynthetic capacity of R. micranthum. We investigated light response curve and chlorophyll content at each habitat. Light compensation points were 11.8 ${\mu}mol\;m^{-2}\;s^{-1}$, 11.5 ${\mu}mol\;m^{-2}\;s^{-1}$ and 10.4 ${\mu}mol\;m^{-2}\;s^{-1}$ in Seokpo-ri, Yeonha-ri, and Mt. Worak. Light saturation points showed that R. micranthum is shade tolerant specie which has the light saturation point approximately 500~600 ${\mu}mol\;m^{-2}\;s^{-1}$. Photosynthetic rates of R. micranthum leaves were 5.5 ${\mu}mol\;m^{-2}\;s^{-1}$, 5.4 ${\mu}mol\;m^{-2}\;s^{-1}$ and 5.6 ${\mu}mol\;m^{-2}\;s^{-1}$ in Seokpo-ri, Yeonha-ri and Mt. Worak. On the other hand, since between $20^{\circ}C$ and $30^{\circ}C$, it appeared that the values of net photosynthetic rates of R. micranthum leaves in all sites were high. Especially, the rates were highest at $25^{\circ}C$. Because of low stomatal transpiration rate in saturation radiance, the moisture utilization efficiency in Yeonha-ri was lower than other habitats. Rates of chlorophyll a, chlorophyll b, and total chlorophyll content in Mt. Worak were no significant difference. Therefore R. micranthum has characteristic of shade tolerant species. The moderate temperature for R. micranthum is between $20^{\circ}C$ and $30^{\circ}C$.