Photosynthetic Characteristics and Chlorophyll Content of Rhododendron micranthum by the Natural Habitat

자생지에 따른 꼬리진달래의 광합성 특성 및 엽록소 함량

  • Kim, Nam-Young (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Kyeong-Cheol (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Han, Sang-Sub (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University) ;
  • Lee, Hee-Bong (Korea General Tree Hospital) ;
  • Park, Wan-Geun (Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University)
  • 김남영 (강원대학교 산림과학대학 산림자원학과) ;
  • 이경철 (강원대학교 산림과학대학 산림자원학과) ;
  • 한상섭 (강원대학교 산림과학대학 산림자원학과) ;
  • 이희봉 ((주)한국나무종합병원) ;
  • 박완근 (강원대학교 산림과학대학 산림자원학과)
  • Received : 2012.03.22
  • Accepted : 2012.04.01
  • Published : 2012.06.30

Abstract

This study was conducted to investigate the photosynthetic R. micranthum by natural habitats. In the results, natural habitats didn't affect values of light saturated point, light compensation point and photosynthetic capacity of R. micranthum. We investigated light response curve and chlorophyll content at each habitat. Light compensation points were 11.8 ${\mu}mol\;m^{-2}\;s^{-1}$, 11.5 ${\mu}mol\;m^{-2}\;s^{-1}$ and 10.4 ${\mu}mol\;m^{-2}\;s^{-1}$ in Seokpo-ri, Yeonha-ri, and Mt. Worak. Light saturation points showed that R. micranthum is shade tolerant specie which has the light saturation point approximately 500~600 ${\mu}mol\;m^{-2}\;s^{-1}$. Photosynthetic rates of R. micranthum leaves were 5.5 ${\mu}mol\;m^{-2}\;s^{-1}$, 5.4 ${\mu}mol\;m^{-2}\;s^{-1}$ and 5.6 ${\mu}mol\;m^{-2}\;s^{-1}$ in Seokpo-ri, Yeonha-ri and Mt. Worak. On the other hand, since between $20^{\circ}C$ and $30^{\circ}C$, it appeared that the values of net photosynthetic rates of R. micranthum leaves in all sites were high. Especially, the rates were highest at $25^{\circ}C$. Because of low stomatal transpiration rate in saturation radiance, the moisture utilization efficiency in Yeonha-ri was lower than other habitats. Rates of chlorophyll a, chlorophyll b, and total chlorophyll content in Mt. Worak were no significant difference. Therefore R. micranthum has characteristic of shade tolerant species. The moderate temperature for R. micranthum is between $20^{\circ}C$ and $30^{\circ}C$.

자생지별 꼬리진달래의 생리반응을 측정한 결과 광보상점은 석포리 11.8 ${\mu}mol\;m^{-2}\;s^{-1}$, 연하리 11.5 ${\mu}mol\;m^{-2}\;s^{-1}$, 월악산 10.4 ${\mu}mol\;m^{-2}\;s^{-1}$로 나타났으며, 광포화점은 500~600 ${\mu}mol\;m^{-2}\;s^{-1}$ 범위로 나타나 음수의 생리적 특성을 갖고 있었다. 광포화시의 광합성 능력은 석포리 5.5 ${\mu}mol\;m^{-2}\;s^{-1}$, 연하리 5.4 ${\mu}mol\;m^{-2}\;s^{-1}$, 월악산 5.6 ${\mu}mol\;m^{-2}\;s^{-1}$로 나타나 광보상점과 광포화점, 광합성 능력은 자생지별로 유의적인 차이가 나타나지 않았다. 온도 변화에 따른 자생지별 꼬리진달래의 순광합성 속도는 3지역 모두 20~$30^{\circ}C$ 온도역에서 높은 광합성 속도를 유지하는 것으로 나타났으며, 그 중 $25^{\circ}C$에서 가장 활발한 광합성을 하는 것으로 나타났다. 연하리의 수분이용효율이 석포리와 월악산에 비해더 높은 것은 포화광도에서 낮은 기공증산속도로 인한 결과였으며, 꼬리진달래의 자생지별 엽록소 a, b 및 총 엽록소 함량은 유의적차이가 없는 것으로 나타났다. 위의 결과를 통해 꼬리진달래는 음수의 특성을 가지며, 생육에 적합한 온도는 20~$30^{\circ}C$인 것을 알 수 있었다.

Keywords

References

  1. Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Plant Physiology 24(1):1-15. https://doi.org/10.1104/pp.24.1.1
  2. Caemmerer, S. and G.D. Farquhar. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta. 353:376-387.
  3. Faria, T., J.I. Garcia-Plazaola, A, Abadia, S. Cerasoli, J.S. Pereira, and M.M. Chaves. 1996. Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiology 16: 115-123 https://doi.org/10.1093/treephys/16.1-2.115
  4. Han, S.S., D.S. Jeon, and J.S. Sim. 2005. Effect of light, temperature, water changes on physiological responses of Kalopanax pictus leaves(1)- characteristics of photosynthesis and respiration of leaves by the light intensity-. Journal of Forest Science 21:83-91 (in Korean).
  5. Hiscox, J.D. and G.F. lsraelstam. 1978. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany. 57(12):1332-1334.
  6. Kim, N.Y., K.C. Lee, S.S. Han, and W.G. Park. 2010. Water relations parameters of Rhododendron micranthum from P-V curves. Korean Journal of Plant Resource 23(4):374-378.
  7. Kim, P.G. and E.J. Lee. 2001a. Ecophysiology of photosynthesis 1: Effects of light intensity and intercellular $CO_2$ pressure on photosynthesis. Korean Journal of Agricultural and Forest Meteorology 3(2):126-133 (in Korean).
  8. Kim, P.G. and E.J. Lee. 2001b. Ecophysiology of photosynthesis 2: Adaptation of the photosynthetic apparatus to changing environment. Korean Journal of Agricultural and Forest Meteorology 3(3):171-176 (in Korean).
  9. Kume, A. and Y. Ino. 1993. Comparison of ecolphysiological response to heavy snow in two varieties of Acuba japonica with different areas of distribution. Ecological Reserch 8:111-121. https://doi.org/10.1007/BF02348523
  10. Koerner, C.H. 1994. Lear diffusive conductances in the major vegetation types of the globe In: Schulze ED, Caldwell M.M. (eds.) Ecophysiology of Photosynthesis (Eco-logical Studies, vol. 100). Springer. Berlin. pp. 463-490.
  11. Larcher, W. 1995. Physiological Plant Ecology. Springer-Verlag. Berlin. 506pp.
  12. Lee, T.B. 1980. Illustrated Flora of Korea. Hyangmunsa. 990pp (in Korean).
  13. Lee, B.R., K.E. Lee, and K.C. Yoo. 1990. A study on the wild Rhododendron micranthum for landscape use - With special reference to photosynthesis -. The Korean Institute of Landscape Architecture. 31(4):400-404 (in Korean).