• Title/Summary/Keyword: Total Inspection

Search Result 733, Processing Time 0.031 seconds

A Coupled Recursive Total Least Squares-Based Online Parameter Estimation for PMSM

  • Wang, Yangding;Xu, Shen;Huang, Hai;Guo, Yiping;Jin, Hai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2344-2353
    • /
    • 2018
  • A coupled recursive total least squares (CRTLS) algorithm is proposed for parameter estimation of permanent magnet synchronous machines (PMSMs). TLS considers the errors of both input variables and output ones, and thus achieves more accurate estimates than standard least squares method does. The proposed algorithm consists of two recursive total least squares (RTLS) algorithms for the d-axis subsystem and q-axis subsystem respectively. The incremental singular value decomposition (SVD) for the RTLS obtained by an approximate calculation with less computation. The performance of the CRTLS is demonstrated by simulation and experimental results.

Design of A Quality System for Multi-Products with the Fixed Costs for Products Servicing (서비스 고정비용을 고려한 복수제품 품질시스템의 설계)

  • Kim Sung Chul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.29 no.4
    • /
    • pp.61-72
    • /
    • 2004
  • In this paper, we design sampling inspections and service capacities simultaneously for multi-products. Particularly, we extend Kim(2003) by introducing the fixed cost of providing services. We show that, due to the fixed cost considered, the cost function of a product is no longer linear or convex in terms of the level of service provision, and the total inspection is prefered to the small level of service capacity which results in high burden of the fixed cost. And we develop a simple framework to deal with this joint design problem for a product. Also we consider the problem of allocating the given number of the total service capacities among products. A dynamic programming algorithm is developed to determine the optimal allocation which minimizes the overall total cost of the system and the optimal allocation can be obtained with the considerably smaller computations than the total number of possible allocations. The results can be used to support planning decisions and to aid the joint design of inspections and service capacities for products.

The Allocation of Inspection Efforts Using a Knowledge Based System

  • Kang, Kyong-sik;Stylianides, Christodoulos;La, Seung-houn
    • Journal of Korean Society for Quality Management
    • /
    • v.18 no.2
    • /
    • pp.18-24
    • /
    • 1990
  • The location of inspection stations is a significant component of production systems. In this paper, a prototype expert system is designed for deciding the optimal location of inspection stations. The production system is defined as a single channel of n serial operation stations. The potential inspection station can be located after any of the operation stations. Nonconforming units are generated from a compound binomial distribution with known parameters at any given operation station. Traditionally Dynamic programming, Zero-one integer programming, or Non-linear programming techniques are used to solve this problem. However a problem with these techniques is that the computation time becomes prohibitively large when t be number of potential inspection stations are fifteen or more. An expert system has the potential to solve this problem using a rule-based system to determine the near optimal location of inspection stations. This prototype expert system is divided into a static database, a dynamic database and a knowledge base. Based on defined production systems, the sophisticated rules are generated by the simulator as a part of the knowledge base. A generate-and-test inference mechanism is utilized to search the solution space by applying appropriate symbolic and quantitative rules based on input data. The goal of the system is to determine the location of inspection stations while minimizing total cost.

  • PDF

Design of the Mechanical System for the Cylindrical Workpiece Inspection System (원통형 공작물 검사장치의 기계장치 설계)

  • Whang, Hyun-Seok;Kim, Gab-Soon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.22-28
    • /
    • 2019
  • In this study, we describe the mechanical design of the cylindrical workpiece inspection system which that can inspect the workpiece machined in the CNC lathe. The workpiece automatic measuring device is composed of a workpiece aligning mechanism, a workpiece diameter measuring mechanism, and a workpiece height measuring mechanism. If the workpiece machined on the CNC lathe is placed on the pedestal of the cylindrical workpiece inspection system, the workpiece aligning mechanism moves the workpiece to the diameter-measuring position and the height- measuring positions, and the diameter-measuring mechanism and the height- measuring mechanisms sequentially measure the diameter and the height of the workpiece. The cylindrical workpiece inspection system was designed and manufactured. The characteristic experiment was conducted to confirm the operation of the machine tool of the cylindrical workpiece inspection system. As a The result of the characteristic test shows that, the workpiece automatic measuring device operated safely.

Development of Chatbot Self-Inspection Scenario for Structural Safety of Existing Reinforced Concrete Buildings (챗봇 활용 철근콘크리트 건축물 구조안전 자가점검 시나리오 개발에 관한 연구)

  • Yang, Jaekwang;Kang, Taewook;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.331-337
    • /
    • 2023
  • Due to the aging of a building, 38.8% (about 2.82 million buildings) of the total buildings are old for more than 30 years after completion and are located in a blind spot for an inspection, except for buildings subject to regular legal inspection (about 3%). Such existing buildings require users to self-inspect themselves and make efforts to take preemptive risks. The scope of this study was defined as the general public's visual self-inspection of buildings and was limited to structural members that affect the structural stability of old buildings. This study categorized possible damage to reinforced concrete to check the structural safety of buildings and proposed a checklist to prevent the damage. A damage assessment methodology was presented during the inspection, and a self-inspection scenario was tested through a chatbot connection. It is believed that it can increase the accessibility and convenience of non-experts and induce equalized results when performing inspections, according to the chatbot guide.

Suggestions for a better inspection method according to the occurrence of fowl typhoid in broiler breeders (육용종계 가금티프스 발생에 따른 검사방법 개선 방안)

  • Chu, Keum-Suk;Kim, Kyoung-Taek;Yoon, Eun-Jeong;Kim, Beom-Seok
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.1
    • /
    • pp.45-49
    • /
    • 2014
  • Pullorum disease and fowl typhoid are septicemic avian diseases transmitting through egg by transovarian infections. A series of tests has been performing in breeding flocks of chickens and test plans for proper inspection have been modified by government veterinary institute to control of such diseases. To improve inspection plans, different test methods were compared using fowl typhoid positive samples from a poultry farm located in Jeonbuk state in 2012. Based on first inspection, 11 samples among total 200 samples were positive by rapid slide agglutination (RSA) test and 7 samples among RSA positive samples were finally diagnosed as Salmonella Gallinarum infection by ELISA, bacterial isolation, PCR, and histopathologic examination. In the second inspection, 20 samples among total 100 samples were positive by RSA test. Among RSA positive ones, 19 samples were positive by ELISA, S. Gallinarm were successfully isolated in 3 samples, and 16 samples were positive by PCR in the cecal tonsils where were not successful for bacterial isolation. Based on histopathologic examination, severe inflammation in the 13 cecal tonsils and infiltration of lymphocytes and heterophils in the 11 livers were observed. Therefore, we suggest that bacterial isolation, PCR, and histopathologic examination methods in the third inspection need to be further used in various tissues for correct diagnosis and for final eradication of pullorum disease and fowl typhoid in breeding flocks of chickens.

Optimal Inspection Policy for One-Shot Systems Considering Reliability Goal (목표 신뢰도를 고려한 원-샷 시스템의 최적검사정책)

  • Jeong, Seung-Woo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.96-104
    • /
    • 2017
  • A one-shot system (device) refers to a system that is stored for a long period of time and is then disposed of after a single mission because it is accompanied by a chemical reaction or physical destruction when it operates, such as shells, munitions in a defense weapon system and automobile airbags. Because these systems are primarily related with safety and life, it is required to maintain a high level of storage reliability. Storage reliability is the probability that the system will operate at a particular point in time after storage. Since the stored one-shot system can be confirmed only through inspection, periodic inspection and maintenance should be performed to maintain a high level of storage reliability. Since the one-shot system is characterized by a large loss in the event of a failure, it is necessary to determine an appropriate inspection period to maintain the storage reliability above the reliability goal. In this study, we propose an optimal inspection policy that minimizes the total cost while exceeding the reliability goal that the storage reliability is set in advance for the one-shot system in which periodic inspections are performed. We assume that the failure time is the Weibull distribution. And the cost model is presented considering the existing storage reliability model by Martinez and Kim et al. The cost components to be included in the cost model are the cost of inspection $c_1$, the cost of loss per unit time between failure and detection $c_2$, the cost of minimum repair of the detected breakdown of units $c_3$, and the overhaul cost $c_4$ of $R_s{\leq}R_g$. And in this paper, we will determine the optimal inspection policy to find the inspection period and number of tests that minimize the expected cost per unit time from the finite lifetime to the overhaul. Compare them through numerical examples.

Comparison in Braking Force Characteristics for the Static and Dynamic Braking Force Inspection System about Vehicles in Service (운행 자동차에 대한 정적 및 동적 제동력 검사 시스템의 제동력 특성 비교)

  • Oh, Sangyeob
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.344-351
    • /
    • 2015
  • Braking force inspection of vehicles in service is certainly one of the most important characteristics that affect vehicle safety. Up to now, in domestic country, the regular safety inspection of vehicles in service has been tested with a roller type brake test (a static braking force inspection system). But, in EU and USA etc. in recent years, it has been tested with a plate type brake test (a dynamic braking force inspection system). In this study, to compare the characteristics of above two test systems, the correlations for the results of braking force are evaluated statistically. As the results, in the case of main braking force, the range of the $R^2$ of the deviation for the left and right side is 0.5386 ~ 0.6231 in the rear axle and 0.0032 ~ 0.0052 in the front axle respectively, then the $R^2$ in the front axle is lower than that in the rear axle and the total variation is unexplained by the least-squares regression line statistically. Also, the p-value for the deviation of the left and right in the front axle is 0.4839 ~ 0.5755, then it has nonsignificant in the front axle. Therefore, the static braking force inspection system can not reflect the inertia force that there is a load transfer from the rear axle to the front axle during braking. Accordingly, it is necessary to adopt the dynamic braking force inspection system which can reflect the inertia force on the regular vehicle safety inspection in domestic country.

A Study on Inspection-ability and Classification-ability Evaluation for Mechanical Parts (기계부품의 검사 및 분류성 평가에 관한 연구)

  • Chang-Su Jeon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1055-1062
    • /
    • 2023
  • Globally, the need for remanufacturing or reusing ships and various mechanical parts continues to increase due to environmental problems including global warming. Research on remanufacturing is being carried out in many areas. However, research on inspection and classification to identify the performance or degree of wear of mechanical parts is insufficient. In particular, studies on the inspection-ability and classification-ability of mechanical parts equipped with various materials and complex forms are highly required. Remanufacturing must be considered from the stage of design to extend the life cycle of mechanical parts. Particularly, it is very important to perform research for evaluating the degree of ease to inspect and classify various sorts of wear or deterioration of parts caused by long-term use easily. In this study, the degree of ease in inspecting or classifying mechanical parts for remanufacturing is defined as inspection-ability and classification-ability. In fact, to remanufacture old parts, inspection-ability and classification-ability should be reflected from the stage of design. The purpose of this study is to evaluate the inspection-ability and classification-ability of ships and various mechanical parts. This researcher has presented the quantitative evaluation procedure of inspection-ability and classification-ability, derived the factors and ranges that influence each of the details of easiness, assigned scores according to the ranges of the factors, and calculated weights. Lastly, this study presents the procedure of scoring to evaluate the overall weights of inspection-ability and classification-ability and also inspection-ability and classification-ability quantitatively.

Prevalence and antimicrobial susceptibility of Brachyspira species in pigs in Korea

  • Lim, Suk-Kyung;Lee, Hee-Soo;Nam, Hyang-Mi;Cho, Yun Sang;Jung, Suk-Chan;Joo, Yi-Seok
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.4
    • /
    • pp.253-257
    • /
    • 2012
  • The purpose of this study was to investigate the prevalence of Brachyspira species and antimicrobial susceptibility of Brachyspira (B.) hyodysenteriae isolates in Korea. A total of fifty-five Brachyspira species were isolated; five (1.0%) beta-hemolytic Brachyspira species and 50 (10.4%) weak hemolytic Brachyspira species from 116 different diarrheic pig samples and 367 apparently normal pig samples. In farm level, beta hemolytic and weak hemolytic Brachyspira species were detected in 7.4% (5/68) and 19.1% (13/68) of tested pig farms, respectively. By phenotypic and genotypic characterization, all beta hemolytic Brachyspira isolates was classified as group I (B. hyodysenteriae), whereas weak hemolytic Brachyspira species isolates were group III (B. innocens or B. murdochii). B. hyodysenteriae isolates showed high level of minimum inhibition concentrations to macrolide antimicrobials. This study shows that the prevalence of pathogenic B. hyodysenteriae in pigs is low but antimicrobial resistance of the pathogens is high in Korea. This is the first report of the prevalence of Brachyspira group III and antimicrobial susceptibility of B. hyodysenteriae in pigs in Korea. Our results could provide basic data for the management and treatment guidelines of Brachyspira infection.