• 제목/요약/키워드: Total Equivalent Strain

검색결과 51건 처리시간 0.024초

지반응답해석기법의 차이에 의한 지반응답 분산도 평가 (Influence of Analysis Models on Variation of Ground Response during Earthquake)

  • 김성렬;최재순;김수일;박대영;박성용;김기풍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2007년 가을학술발표회
    • /
    • pp.317-333
    • /
    • 2007
  • The Round-Robin Test (RRT) for ground response analysis was performed by Division of Geotechnical Earthquake Engineering of Korean Geotechnical Society. This research analyzed the influence of analysis methods on variation of ground response by using the results of this RRT. The analysis methods include equivalent linear analysis, non-linear analysis and effective stress analysis. A total of 5 teams among 12 teams applied two kinds of analysis methods. This research compared the results of these 5 teams and analyzed the variation of the results according to analysis methods. The compared results were shear stress-shear strain relation, transfer function, time history and the response spectrum of ground surface acceleration, peak ground acceleration, peak shear strain and maximum excess pore pressure ratio.

  • PDF

Research of the impact of material and flow properties on fluid-structure interaction in cage systems

  • Mehmet Emin Ozdemir;Murat Yaylaci
    • Wind and Structures
    • /
    • 제36권1호
    • /
    • pp.31-40
    • /
    • 2023
  • This paper investigates the mechanical behavior of full-scale offshore fish cages under hydrodynamic loads. To simulate different cases, different materials were used in the fish cage and analyzed under different flow velocities. The cage system is studied in two parts: net cage and floating collar. Analyses were performed with the ANSYS Workbench program, which allows the Finite Element Method (FEM) and Computational Fluid Dynamics (CFD) method to be used together. Firstly, the fish cage was designed, and adjusted for FSI: Fluid (Fluent) analysis. Secondly, mesh structures were created, and hydrodynamic loads acting on the cage elements were calculated. Finally, the hydrodynamic loads were transferred to the mechanical model and applied as a pressure on the geometry. In this study, the equivalent (von Mises) stress, equivalent strain, and total deformation values of cage elements under hydrodynamic loads were investigated. The data obtained from the analyses were presented as figures and tables. As a result, it has been shown that it is appropriate to use all the materials examined for the net cage and the floating collar.

자동차용 파워스티어링 호스의 스웨이징 공정 유한요소해석 (Finite Element Analysis of Swaging Process for Power Steering Hose)

  • 노기태;전도형;조진래
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.747-754
    • /
    • 2004
  • The nonlinear finite element analysis for deformation characteristics of a power steering hose during the swaging process is performed in order to investigate the stress and the strain levels of the hose components. Power steering hose consists of components such as rubber hose, nylon, nipple and sleeve. Moreover, the numerical analysis requires the consideration of material, geometry and boundary nonlinearities. To evaluate the rubber hose strength, the measured stresses and strains are compared with tension and compression test data. Contact force is also a principal factor to examine whether rubber hose is break away from sleeve and nipple or not.

콘크리트의 방향적 비국소 균열 손상을 위한 소성모델 (Plasticity Model for Directional Nonlocal Crack Damage of Concrete)

  • 김재요;박홍근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.914-921
    • /
    • 2006
  • To describe the effect of the numerous and various oriented microcracks on the compressive and tensile concrete behaviors, the directional nonlocality is defined. The plasticity model using multiple failure criteria is developed for RC planar members in tension-compression. The crack damages are defined in the pre-determined reference orientations, and then the total crack damage is calculated by integrating multi-oriented crack damages. To describe the effect of directional nonlocality on the anisotropic tensile damage, based on the existing test results, the nonlocal damage factor is defined in each reference orientation. The reduced compressive strength in the cracked concrete is defined by the multi-oriented crack damages defined as excluding the tensile normal plastic strain from the compressive equivalent plastic strain. The proposed model is implemented to finite element analysis, and it is verified by comparisons with various existing panel test results.

  • PDF

The anchorage-slip effect on direct displacement-based design of R/C bridge piers for limiting material strains

  • Mergos, P.E.
    • Computers and Concrete
    • /
    • 제11권6호
    • /
    • pp.493-513
    • /
    • 2013
  • Direct displacement-based design (DDBD) represents an innovative philosophy for seismic design of structures. When structural considerations are more critical, DDBD design should be carried on the basis of limiting material strains since structural damage is always strain related. In this case, the outcome of DDBD is strongly influenced by the displacement demand of the structural element for the target limit strains. Experimental studies have shown that anchorage slip may contribute significantly to the total displacement capacity of R/C column elements. However, in the previous studies, anchorage slip effect is either ignored or lumped into flexural deformations by applying the equivalent strain penetration length. In the light of the above, an attempt is made in this paper to include explicitly anchorage slip effect in DDBD of R/C column elements. For this purpose, a new computer program named RCCOLA-DBD is developed for the DDBD of single R/C elements for limiting material strains. By applying this program, more than 300 parametric designs are conducted to investigate the influence of anchorage slip effect as well as of numerous other parameters on the seismic design of R/C members according to this methodology.

A numerical tension-stiffening model for ultra high strength fiber-reinforced concrete beams

  • Na, Chaekuk;Kwak, Hyo-Gyoung
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.1-22
    • /
    • 2011
  • A numerical model that can simulate the nonlinear behavior of ultra high strength fiber-reinforced concrete (UHSFRC) structures subject to monotonic loadings is introduced. Since engineering material properties of UHSFRC are remarkably different from those of normal strength concrete and engineered cementitious composite, classification of the mechanical characteristics related to the biaxial behavior of UHSFRC, from the designation of the basic material properties such as the uniaxial stress-strain relationship of UHSFRC to consideration of the bond stress-slip between the reinforcement and surrounding concrete with fiber, is conducted in this paper in order to make possible accurate simulation of the cracking behavior in UHSFRC structures. Based on the concept of the equivalent uniaxial strain, constitutive relationships of UHSFRC are presented in the axes of orthotropy which coincide with the principal axes of the total strain and rotate according to the loading history. This paper introduces a criterion to simulate the tension-stiffening effect on the basis of the force equilibriums, compatibility conditions, and bond stress-slip relationship in an idealized axial member and its efficiency is validated by comparison with available experimental data. Finally, the applicability of the proposed numerical model is established through correlation studies between analytical and experimental results for idealized UHSFRC beams.

A new finite element procedure for fatigue life prediction of AL6061 plates under multiaxial loadings

  • Tarar, Wasim;Herman Shen, M.H.;George, Tommy;Cross, Charles
    • Structural Engineering and Mechanics
    • /
    • 제35권5호
    • /
    • pp.571-592
    • /
    • 2010
  • An energy-based fatigue life prediction framework was previously developed by the authors for prediction of axial, bending and shear fatigue life at various stress ratios. The framework for the prediction of fatigue life via energy analysis was based on a new constitutive law, which states the following: the amount of energy required to fracture a material is constant. In the first part of this study, energy expressions that construct the constitutive law are equated in the form of total strain energy and the distortion energy dissipated in a fatigue cycle. The resulting equation is further evaluated to acquire the equivalent stress per cycle using energy based methodologies. The equivalent stress expressions are developed both for biaxial and multiaxial fatigue loads and are used to predict the number of cycles to failure based on previously developed prediction criterion. The equivalent stress expressions developed in this study are further used in a new finite element procedure to predict the fatigue life for two and three dimensional structures. In the second part of this study, a new Quadrilateral fatigue finite element is developed through integration of constitutive law into minimum potential energy formulation. This new QUAD-4 element is capable of simulating biaxial fatigue problems. The final output of this finite element analysis both using equivalent stress approach and using the new QUAD-4 fatigue element, is in the form of number of cycles to failure for each element on a scale in ascending or descending order. Therefore, the new finite element framework can provide the number of cycles to failure at each location in gas turbine engine structural components. In order to obtain experimental data for comparison, an Al6061-T6 plate is tested using a previously developed vibration based testing framework. The finite element analysis is performed for Al6061-T6 aluminum and the results are compared with experimental results.

EQPS를 이용한 복합장갑의 해석 및 최적설계 (The analysis and optimization of dual armor plate considering EQPS)

  • 박명수;유정훈;정동택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.111-118
    • /
    • 2004
  • For the precise analysis of high velocity impact problem though FEM with element erosive method, the adequate mesh size and critical equivalent plastic strain(EQPS) is chosen prior to the simulation. In this research, it is strongly required from a standpoint that critical EQPS is used to decide whether perforation occurs or not. The optimization of dual armor plate consisting of 4340 steel and 2024 aluminium against a die steel sphere with high-velocity has been suggested using Lagrangian explicit time-integration code, NET2D. The response surface method based on the design of experiment is utilized for the size optimization. The optimized thickness of each layer, in which perforation does not occur, the strength of multi-layer is maximized and total weight is minimized, is obtained at a constant velocity of a pellet with a designated total thickness.

  • PDF

Modelling of tension-stiffening in bending RC elements based on equivalent stiffness of the rebar

  • Torres, Lluis;Barris, Cristina;Kaklauskas, Gintaris;Gribniak, Viktor
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.997-1016
    • /
    • 2015
  • The contribution of tensioned concrete between cracks (tension-stiffening) cannot be ignored when analysing deformation of reinforced concrete elements. The tension-stiffening effect is crucial when it comes to adequately estimating the load-deformation response of steel reinforced concrete and the more recently appeared fibre reinforced polymer (FRP) reinforced concrete. This paper presents a unified methodology for numerical modelling of the tension-stiffening effect in steel as well as FRP reinforced flexural members using the concept of equivalent deformation modulus and the smeared crack approach to obtain a modified stress-strain relation of the reinforcement. A closed-form solution for the equivalent secant modulus of deformation of the tensioned reinforcement is proposed for rectangular sections taking the Eurocode 2 curvature prediction technique as the reference. Using equations based on general principles of structural mechanics, the main influencing parameters are obtained. It is found that the ratio between the equivalent stiffness and the initial stiffness basically depends on the product of the modular ratio and reinforcement ratio ($n{\rho}$), the effective-to-total depth ratio (d/h), and the level of loading. The proposed methodology is adequate for numerical modelling of tension-stiffening for different FRP and steel reinforcement, under both service and ultimate conditions. Comparison of the predicted and experimental data obtained by the authors indicates that the proposed methodology is capable to adequately model the tension-stiffening effect in beams reinforced with FRP or steel bars within wide range of loading.

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.