• 제목/요약/키워드: Total Design Process

검색결과 1,208건 처리시간 0.024초

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.

임피던스 센서 제작을 위한 잉크젯 기반 패턴 IDE 적층공정 최적화 연구 (A Study on Optimization of Inkjet-based IDE Pattern Process for Impedance Sensor)

  • 정현윤;고정범
    • 한국기계가공학회지
    • /
    • 제21권4호
    • /
    • pp.107-113
    • /
    • 2022
  • At present, it is possible to manufacture electrodes down to several micrometers (~ ㎛) using inkjet printing technology owing to the development of precision ejection heads. Inkjet printing technology is also used in the manufacturing of bio-sensors, electronic sensors, and flexible displays. To reduce the difference between the electrode design/simulation performance and actual printing pattern performance, it is necessary to analyze and optimize the processable area of the ink material, which is a fluid. In this study, process optimization was conducted to manufacture an IDE pattern and fabricate an impedance sensor. A total of 25 IDE patterns were produced, with five for each lamination process. Electrode line width and height changes were measured by stacking the designed IDE pattern with a nanoparticle-based conductive ink multilayer. Furthermore, the optimal process area for securing a performance close to the design result was analyzed through impedance and capacitance. It was observed that the increase in the height of stack layer 4 was the lowest at 4.106%, and the increase in capacitance was measured to be the highest at 44.08%. The proposed stacking process pattern, which is optimized in terms of uniformity, reproducibility, and performance, can be efficiently applied to bio-applications such as biomaterial sensing with an impedance sensor.

용탕유동과 응고를 고려한 주조공정의 유한요소해석

  • 윤석일;김용환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.620-625
    • /
    • 1995
  • Finite element analysis tool was developed to analyze the casting process. Generally, casting processes consists of mold filling and solifification. In order to investigate the effects of process variables and to predict the defects, both filling and solidiffication process were simulated simultaneously. At filling process, especiallywe consider thermal coupling to investigate thermal history of material during the filling stage. And thermal condition at the final stage of filling is used as the initial conditions in a solidification process for the exact simulation of the actual casting processes. At mold filling process, Lagrangian-type finite element method with automatic remashing scheme was used to find the material flow. To avoid numerical instability in low viscous fluid, a perturbation method with artificial viscosity is adopted. At solififfication process, enthalpy-based finite element method was used to solve the heat transfer problem with phase change. And elastic stress analysis has been performed to predict the thermal residual stress. Through the FE analysis, solidiffication time, position of solidus line, liquidus line and thermal residual stress are studied. Finite element tools developed in this study will be used process design of casting process and maybe basic structure for total CAE system of castigs which will be constructed afterward.

RECENT ADVANCES IN DOMAIN DECOMPOSITION METHODS FOR TOTAL VARIATION MINIMIZATION

  • LEE, CHANG-OCK;PARK, JONGHO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권2호
    • /
    • pp.161-197
    • /
    • 2020
  • Total variation minimization is standard in mathematical imaging and there have been numerous researches over the last decades. In order to process large-scale images in real-time, it is essential to design parallel algorithms that utilize distributed memory computers efficiently. The aim of this paper is to illustrate recent advances of domain decomposition methods for total variation minimization as parallel algorithms. Domain decomposition methods are suitable for parallel computation since they solve a large-scale problem by dividing it into smaller problems and treating them in parallel, and they already have been widely used in structural mechanics. Differently from problems arising in structural mechanics, energy functionals of total variation minimization problems are in general nonlinear, nonsmooth, and nonseparable. Hence, designing efficient domain decomposition methods for total variation minimization is a quite challenging issue. We describe various existing approaches on domain decomposition methods for total variation minimization in a unified view. We address how the direction of research on the subject has changed over the past few years, and suggest several interesting topics for further research.

사전예방을 위한 설비안전정보시스템 개발 (Development of Plant Safety Information Management System for Preventive Maintenance)

  • 김태환;양광모;최성희;강경식
    • 대한안전경영과학회지
    • /
    • 제7권2호
    • /
    • pp.1-12
    • /
    • 2005
  • TPM(Total Productive Management) that is enforcing introducing more than $80\%$ in domestic manufacturing industry is using total plant efficiency by the evaluation index, and as a result, can see a lot of examples that plant productivity is increased. This study's purpose centers total productive management activities that is management system for total plant efficiency's maximization, plant information system that total productive management activities factor that is enforcing in manufacturing industry can develop evaluation model that can evaluate qualitative activities by quantitative activities in process that maximize total plant efficiency wishes to do design.

평면뼈대구조의 신뢰성해석에 관한연구 (A study on Reliability Analysis for Plane Frame Structure)

  • 이중빈;신형우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1989년도 가을 학술발표회 논문집
    • /
    • pp.34-39
    • /
    • 1989
  • Recent trends in design standards development have encouraged the use of probabilistic limit sate design concepts. Reliability analysis adopted in those advanced countries have the potentials that they afford for symplifying the design Process arid placing it on a consistent reliability based for various construction materials. This study is proposed in the reliability analysis of plane frame structures using second-order moment method(Level-II they). Lind-Hasofer's minimum distance method is use in the derivation of an mathematical algorithm as well as an determination of Correlation cofficients, reliability index and total reliability index depending on the multiple failure modes. In addition. This study is employed as a practical tool for the approximate reliability analysis. Results of the numerincal analysis showed that the difference between the reliability index of the failure probability of the multiple failure modes and the total reliability index of the failure probability with the simultaneous failure modes deviated nearly 3∼10% depending on tile performance functions.

  • PDF

Window-to-Wall-Ratio for Energy Reduction in Early Design Stage of Residential Building

  • Lee, Myung Sik
    • Architectural research
    • /
    • 제19권4호
    • /
    • pp.89-94
    • /
    • 2017
  • In Korea, it is necessary to improve the performance of buildings with respect to the energy efficiency while improving the quality of occupants' lives through a sustainable built environment. During the design and development process, building projects must have a comprehensive, integrated perspective that seeks to reduce heating, cooling and lighting loads through climate-responsive designs. The aim of this study is to assess the optimal window-to-wall ratio of multi-rise residential units in the early design phase in Korea. The study analyzed the variation of annual heating and cooling energy load in two apartment prototype units located in Seoul city using different WWRs. The analysis was conducted using Autodesk Ecotect Analysis 2011 tool. The study found for total annual building load reductions WWR on the south and north face should be studied independently based on the room function. It also found reducing the WWR for bedrooms and windows on the northern façade resulted in reduced total annual building load.

Design of bivariate step-stress partially accelerated degradation test plan using copula and gamma process

  • Srivastava, P.W.;Manisha, Manisha;Agarwal, M.L.
    • International Journal of Reliability and Applications
    • /
    • 제17권1호
    • /
    • pp.21-49
    • /
    • 2016
  • Many mechanical, electrical and electronic products have more than one performance characteristics (PCs). For example the performance degradation of rubidium discharge lamps can be characterized by the rubidium consumption or the decreasing intensity the lamp. The product may degrade due to all the PCs which may be independent or dependent. This paper deals with the design of optimal bivariate step-stress partially accelerated degradation test (PADT) with degradation paths modelled by gamma process. The dependency between PCs has been modelled through Frank copula function. In partial step-stress loading, the unit is tested at usual stress for some time, and then the stress is accelerated. This helps in preventing over-stressing of the test specimens. Failure occurs when the performance characteristic crosses the critical value the first time. Under the constraint of total experimental cost, the optimal test duration and the optimal number of inspections at each intermediate stress level are obtained using variance optimality criterion.

LOM 시스템을 이용한 패턴제작에 관한 연구 (A Study on Manufacturing Process of Pattern with LOM System)

  • 최만성;최배호
    • 한국정밀공학회지
    • /
    • 제18권3호
    • /
    • pp.47-52
    • /
    • 2001
  • Rapid Prototyping(RP) has been widely applied in designing and developing process of new products. RP can reduce the lead time and expense required to bring a new product form initial concept to production. Among several RP process can dramatically reduce the total build time and be applied for fabrication of large-sized and free form object because it uses in LOM the paper thickness is 0.05∼0.38mm as deposition feature segment. In this study, mechanical properties of pattern with LOM system is studied for optimal design of sand mold casting. The main result is that tensile, compressive strength and pattern size are significantly affected by temperature of hot roll.

  • PDF

안전관리를 위한 AHP 설비 평가시스템 개발에 관한 연구 (A Study on the Development of Analytic Hierarchy Process Plant Evaluation System for Safety Management)

  • 윤여권;조용욱;양광모
    • 대한안전경영과학회지
    • /
    • 제14권3호
    • /
    • pp.127-134
    • /
    • 2012
  • Plant safety management that is enforcing introducing more than 95% in domestic manufacturing industry is using total plant efficiency by the evaluation index, and as a result, can see a lot of examples that plant productivity, economy and safety is increased. The efficient safety estimation for a business should analyze an accident data by considering every possible and potential factor. This study's purpose centers plant safety management activities that is management system for plant production and safety efficiency's maximization, plant evaluation system that plant safety management activities factor(reliability, maitainability, safety, service quality) that is enforcing in manufacturing industry can develop evaluation model that can evaluate qualitative activities by quantitative activities in process that maximize plant safety management wishes to do design.