• Title/Summary/Keyword: Torsional stiffness

Search Result 359, Processing Time 0.022 seconds

Development of Computer Program of Torsional Vibration Analysis for Design of Diesel Engine Propulsion Shafting (디젤기관 추진축계의 설계를 위한 비틀림 진동해석 전산프로그램의 개발)

  • Choi, M.S.;Moon, D.H.;Sim, J.M.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.23-28
    • /
    • 2003
  • It is very important to analyze the torsional vibration for the propulsion shafting of ship. The authors have developed the transfer stiffness coefficient method(TSCM) as a vibration analysis algorithm. The concept of the TSCM is based on the successive transfer of stiffness coefficient. The effectiveness of the TSCM was verified through many applications. In this paper, the TSCM is applied to the torsional free vibration analysis for the propulsion shafting of an actual shin with a diesel engine. In order to calculate the additional torsional stresses of the propulsion shafting the torsional forced vibration for the shafting is analyzed by using both the modal analysis method and the results of the torsional free vibration analysis by the TSCM. The accuracy of the present method is confirmed by comparing with the vibration analysis results of engine maker.

  • PDF

Torsional Vibration Stress Analysis for Shafting in Reciprocating Machine by Transfer Stiffness Coefficient Method (전달강성계수법에 의한 왕복 기계 축계의 비틀림진동 응력해석)

  • 최명수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.749-756
    • /
    • 2004
  • While designing shafting in reciprocating machines with internal combustion engines which derive generators, pumps, and vehicles, it is very important to calculate the additional stress of shafting by torsional vibration. In this paper, the transfer stiffness coefficient method which is based on the successive transfer of stiffness coefficient was applied to the calculation of the additional stress of shafting in reciprocating machine by torsional vibration. In order to confirm the effectiveness of the present method, a propulsion shafting with a diesel engine in a vessel was considered as the computational example of shafting in reciprocating machine. The results calculated by the present method were compared with those of the modal analysis method, the mechanical impedance method, and free vibration analysis.

Design and Analysis of Kart Chassis Frame for Bending and Torsional Stiffness (굽힘과 비틀림 강성을 갖는 카트 섀시 프레임의 설계와 해석)

  • 장성국;강신하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.226-231
    • /
    • 2003
  • There have been many attempts to make kart chassis domestically to lower the price of complete kart. However nobody made a successful chassis due to the lack of understanding the characteristics of kart chassis frame. In this work, a baseline chassis frame under the bending and torsional load is studied. Design target is that the baseline chassis frame is quite adequate not only for the beginners but also for the beginning racers. Results from the analysis are used as a guide to design or modify the baseline chassis with the goal of proper torsional stiffness. Minimum increase in weight is being forced. As a result, the baseline chassis frame was designed, made, and tested. Based on the design results, complete karts are being manufactured by the small 1 size domestic company and these karts are being sold and run in the market.

A Study on the Stiffness Design for a Steel Spring Torsional Vibration Damper (강판 스프링형 비틀림 진동댐퍼의 강성설계 연구)

  • Lee, D.H.;Chung, T.Y.;Kim, Y.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.996-1002
    • /
    • 2013
  • Conditions of stiffness for a steel spring torsional vibration damper are difficult and ambiguous. Nevertheless correct estimation of stiffness is essential and important in the damper design for the damper to activate properly in the field. In this paper, to build up the estimation method of steel spring torsional vibration damper a miniaturized model was developed for modelling between a spring and inner star of the damper. The method obtained from the results through the experiment and analysis of it was applied to the prototype torsional damper.

Torsional Vibration Analysis of a Spur Gear Pair with the Variable Mesh Stiffness (기어이의 변동물림강성을 고려한 비틀림진동해석)

  • Ryu, Jae-Wan;Han, Dong-Chul;Choi, Sang-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.99-108
    • /
    • 1999
  • A four-degree-of-freedom non-linear model with time varying mesh stiffness has been developed for the dynamic analysis of spur gear trains. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover. In the model, developed several factors such as time varying mesh stiffness and damping, separation of teeth, teeth collision, various gear errors and profile modifications have been considered. Two computer programs are developed to calculate stiffness of a gear pair and transmission error and the dynamic analysis of modeled system using time integration method. Dynamic tooth and mesh forces, dynamic factors are calculated. Numerical examples have been given, which shows the time varying mesh stiffness ha a significant effect upon the dynamic tooth force and torsional vibrations.

  • PDF

Deformation Based Seismic Design of Asymmetric Wall Structures (변형에 기초한 비대칭 벽식 주초의 내진설계)

  • 홍성걸;조봉호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.43-53
    • /
    • 2002
  • Current torsional provisions focus n restricting torsional effect of asymmetric wall structures by proportioning strength of wall based on the traditional assumption that stiffness and strength are independent. Recent studies have pointed out that stiffness of structural wall is dependent on the strength. This implies that actual stiffness of walls can be determined only after torsional design is finished and current torsional provisions may result in significant errors. To overcome this shortcoming, this paper proposes deformation based torsional design for asymmetric wall structures. Contrary to the current torsional provisions, deformation-based torsional design uses displacement and rotation angle as design parameters and calculates base shear for inelastic torsional response directly. Main purpose of deformation based torsional design is not to restrict torsional response but to ensure intended torsional mechanism according to the capacity design concept. Because displacement and rotation angle can be used as performance criteria indicating performance level of asymmetric structures, this method can be applied to the performance based seismic design effectively.

Buckling resistance, bending stiffness, and torsional resistance of various instruments for canal exploration and glide path preparation

  • Kwak, Sang-Won;Ha, Jung-Hong;Lee, WooCheol;Kim, Sung-Kyo;Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.39 no.4
    • /
    • pp.270-275
    • /
    • 2014
  • Objectives: This study compared the mechanical properties of various instruments for canal exploration and glide-path preparations. Materials and Methods: The buckling resistance, bending stiffness, ultimate torsional strength, and fracture angle under torsional load were compared for C+ file (CP, Dentsply Maillefer), M access K-file (MA, Dentsply Maillefer), Mani K-file (MN, Mani), and NiTiFlex K-file (NT, Dentsply Maillefer). The files of ISO size #15 and a shaft length of 25 mm were selected. For measuring buckling resistance (n = 10), the files were loaded in the axial direction of the shaft, and the maximum load was measured during the files' deflection. The files (n = 10) were fixed at 3 mm from the tip and then bent $45^{\circ}$ with respect to their long axis, while the bending force was recorded by a load cell. For measuring the torsional properties, the files (n = 10) were also fixed at 3 mm, and clockwise rotations (2 rpm) were applied to the files in a straight state. The torsional load and the distortion angle were recorded until the files succumbed to the torque. Results: The CP was shown to require the highest load to buckle and bend the files, and the NT showed the least. While MA and MN showed similar buckling resistances, MN showed higher bending stiffness than MA. The NT had the lowest bending stiffness and ultimate torsional strength (p < 0.05). Conclusions: The tested instruments showed different mechanical properties depending on the evaluated parameters. CP and NT files were revealed to be the stiffest and the most flexible instruments, respectively.

Analysis of the Dynamical Characteristics and Prediction of Stiffness for the Joint between Members (부재간 결합부의 동적 특성 분석 및 강성 예측)

  • Yun, Seong-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.58-64
    • /
    • 2019
  • This paper describes the analysis of dynamic characteristics and prediction of the stiffness for the joint between structural members. In the process of deriving the governing equations, the stiffness values responsible for the moment and shear force were modelled by using linear and torsional springs in the middle of a clamped-clamped beam. The sensitivities of the natural frequency and modal assurance criterion were investigated as a function of the dimensionless linear and torsional spring stiffness. The reliability of the predictions for the linear and torsional stiffness values was verified by the inverse computations of the stiffness matrix. The predictive and exact theoretical stiffness values were compared for the stiffness element in the finite element formulation, and their results show an excellent correlation. It is strongly anticipated that although the proposed methodology is currently limited to the analytical utilization, it will provide a useful tool to estimate unknown joint stiffness values based on the experimental natural frequency and mode shape.

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

Torsional Rigidity of a Two-stage Cycloid Drive (이단 사이클로이드 드라이브의 비틀림 강성)

  • Kim, Kyoung-Hong;Lee, Chun-Se;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1217-1224
    • /
    • 2009
  • This paper presents a finite element (FE) analysis of the torsional rigidity of a two-stage cycloid drive. The cycloid disk makes contact with a number of pin-rollers simultaneously and eccentric shafts transmit not only torque of the spur gear stage to the cycloid disk, but also that of the cycloid disk to the output disk. Contacts between the disk and pin-rollers are simplified as linear spring elements, and the bearing of eccentric shaft is modeled as a rigid ring that has frictional contact to the disk and an elastic support. FE analysis for an ideal solid cycloid drive was performed and verified by a theoretical calculation. Accurate contact forces were then estimated by iterating between FE analysis for contact forces and Hertz theory calculations for nonlinear contact stiffness. In addition, torsional rigidity of the cycloid drive is analyzed to show that the bearing and nonlinear Hertz contact theory should be considered in analysis and design of a cycloid drive, which was verified with experiments. Finally, the effects of contact stiffness, bearing stiffness and cycloid disk structural stiffness according to the cycloid disk rotation on the torsional rigidity were investigated.