• 제목/요약/키워드: Torsional box

검색결과 100건 처리시간 0.022초

탄성받침을 가지는 단경간 곡선 강박스거더 교량의 부반력 특성평가 (Evaluation of Characteristics on Negative Reactions of Simply Supported Curved Box Girder Bridges with Elastomeric Bearings)

  • 김경식;이희정
    • 한국전산구조공학회논문집
    • /
    • 제28권2호
    • /
    • pp.161-168
    • /
    • 2015
  • 평면내 곡선교량은 편심하중뿐만 아니라 자중만으로도 비틀림하중을 받게 되고, 이는 지점부 부반력 발생의 원인이 된다. 본 논문에서는 경간장 48.8m를 가지는 단경간 곡선강박스 거더교량에 대해 내부곡률각도를 0.49~1.35rad으로 조정하면서 곡률효과에 따라 지점에서 발생하는 수직반력을 분석하였다. 부반력 발생가능성을 고려하여 반력 크기 및 방향을 예측하기 위해 곡선교량 상부구조를 각 독립된 요소로 분리하여 반력산정식을 해석적으로 개발하였다. 콘크리트 바닥판 및 강재 하부플랜지는 각각 면의 차원을 가지는 기학학적 환형섹터로, 수평면내에서 폭이 좁게 투영되어 나타나는 상부플랜지 및 복부판은 선의 차원을 가지는 기하학적 호로 가정되었다. 제안된 반력산정식의 형식은 비교적 단순하고 그 예측값은 유한요소해석으로 얻은 값과 비교하였을 때 오차가 1% 수준으로 잘 일치하였다.

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

Blockage effects on aerodynamics and flutter performance of a streamlined box girder

  • Li, Yongle;Guo, Junjie;Chen, Xingyu;Tang, Haojun;Zhang, Jingyu
    • Wind and Structures
    • /
    • 제30권1호
    • /
    • pp.55-67
    • /
    • 2020
  • Wind tunnel test is one of the most important means to study the flutter performance of bridges, but there are blockage effects in flutter test due to the size limitation of the wind tunnel. On the other hand, the size of computational domain can be defined by users in the numerical simulation. This paper presents a study on blockage effects of a simplified box girder by computation fluid dynamics (CFD) simulation, the blockage effects on the aerodynamic characteristics and flutter performance of a long-span suspension bridge are studied. The results show that the aerodynamic coefficients and the absolute value of mean pressure coefficient increase with the increase of the blockage ratio. And the aerodynamic coefficients can be corrected by the mean wind speed in the plane of leading edge of model. At each angle of attack, the critical flutter wind speed decreases as the blockage ratio increases, but the difference is that bending-torsion coupled flutter and torsional flutter occur at lower and larger angles of attack respectively. Finally, the correction formula of critical wind speed at 0° angle of attack is given, which can provide reference for wind resistance design of streamlined box girders in practical engineering.

자동차 시트 틸팅 각도에 따른 기어박스 마찰소음 영향도 (Tilting Effect of Automotive Seat System on Squeak Noise)

  • 강재영
    • 한국소음진동공학회논문집
    • /
    • 제20권6호
    • /
    • pp.577-582
    • /
    • 2010
  • The squeak propensity in the gear box of an automotive seat system is investigated analytically. The mating parts in the gear box are the lead screw and the nut, where the friction stresses are exerted on the thread of the screw. The lead screw is modeled as a circular beam allowing the bending and torsional vibrations. In the system, the lead screw converts rotating to translating motion so that it moves the automotive seat slightly tilted on the floor. The tilting angle is considered one major parameter in this study. Therefore, the equations of motion associated with the non-conservative friction force are derived with the inclusion of the tilting angle. It is found that the squeak noise corresponds to the several bending modes of the lead screw and its propensity is increased by the tilting angle of the seat.

Effects of deck's width-to-depth ratios and turbulent flows on the aerodynamic behaviors of long-span bridges

  • Lin, Yuh-Yi;Cheng, Chii-Ming;Lan, Chao-Yuan
    • Wind and Structures
    • /
    • 제6권4호
    • /
    • pp.263-278
    • /
    • 2003
  • This study investigates the effects of a bridge deck's width-to-depth (B/H) ratio and turbulence on buffeting response and flutter critical wind speed of long-span bridges by conducting section model tests. A streamlined box section and a plate girder section, each with four B/H ratios, were tested in smooth and turbulent flows. The results show that for the box girders, the response increases with the B/H ratio, especially in the vertical direction. For the plate girders, the vertical response also increases with the B/H ratio. However, the torsional response decreases as the B/H ratio increases. Increasing the B/H ratio and intensity of turbulence tends to improve the bridge's aerodynamic stability. Experimental results obtained from the section model tests agree reasonably with the calculated results obtained from a numerical analysis.

다중 셀 박스형 교량에 대한 구조해석 모델의 비교연구 (A Comparative Study on Structural Modeling of Mullticellular Box Girder Bridges)

  • 김동욱;김상훈;김문영
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.325-332
    • /
    • 2001
  • Due to the rapidly developing computer technique, bridges can be modeled by using grillage method for analyzing the girder, or FEM for more accrute and detailed analysis. If the cells of multicellular decks are stiffened with diaphrams or cross-bracing at frequent intervals, to prevent them changing shape by distortion, the deck can be analysed like a beam if it is narrow, or like slab if it is wide. However it is often convenient and acceptable to use cellular structures and box-girders which do distort under shear and torsional loading, and it is then necessary to take account of the distortion in the method of calculation. But plane grillage method cannot cosider effect of distortion and FEM is non-economical because it is not easy to modeling and needs lots of time. So, this study suggests the Shear-flexible Grillage which reproduces the distortion behaviour of the cells.

  • PDF

Steel-concrete composite bridge analysis using generalised beam theory

  • Goncalves, Rodrigo;Camotim, Dinar
    • Steel and Composite Structures
    • /
    • 제10권3호
    • /
    • pp.223-243
    • /
    • 2010
  • This paper reports recent developments concerning the application of Generalised Beam Theory (GBT) to the structural analysis of steel-concrete composite bridges. The potential of GBT-based semi-analytical or finite element-based analyses in this field is illustrated/demonstrated by showing that both accurate and computationally efficient solutions may be achieved for a wide range of structural problems, namely those associated with the bridge (i) linear (first-order) static, (ii) vibration and (iii) lateral-torsional-distortional buckling behaviours. Several illustrative examples are presented, which concern bridges with two distinct cross-sections: (i) twin box girder and (ii) twin I-girder. Allowance is also made for the presence of discrete box diaphragms and both shear lag and shear connection flexibility effects.

휨과 비틀림을 동시에 받는 강/콘크리트 합성 제형 박스거더의 극한강도 상호작용 (Ultimate Strength Interaction of Steel/Concrete Composite Trapezoidal Box Girders Subjected to Concurrent Action of Bending and Torsion)

  • 김경식
    • 한국강구조학회 논문집
    • /
    • 제22권5호
    • /
    • pp.465-475
    • /
    • 2010
  • 곡선교량시스템에서 거더는 편심하중이 없어도 교량이 가지는 곡률 자체로 인하여 휨 및 비틀림 거동을 하게 된다. 휨과 비틀림을 동시에 받는 강/콘크리트 합성 박스거더는 St. Venant 비틀림에 의해 콘크리트 바닥판에 발생하는 사인장 응력에 의해 그 극한강도가 제한된다. 합성 박스거더의 극한강도를 얻기 위하여 유한요소해석 패키지 프로그램 ABAQUS을 이용하여 재료 및 기하 비선형성뿐 아니라 콘크리트 균열후 거동 등이 고려된 비선형해석을 수행하였다. 또한 구조해석 이론에 근거한 해석적 방법론으로 합성 박스거더의 휨과 비틀림에 대한 극한강도 상호 작용이 고려된 수식을 유도하여 수치해석 결과와 비교하였다. 휨 거동에 의해 정모멘트 구간 박스거더 상부에 발생하는 종방향 압축응력은 바닥판 콘크리트의 전단강도를 일정부분 향상시켜 결과적으로 전체 박스거더의 비틀림강도가 향상되는 효과가 확인되었다. 유한요소해석 및 구조해석 이론 전개의 결과에 근거하여 강합성 박스거더의 극한강도 상호작용을 예측하는 간편한 형태의 수식이 제안되었다.

유비쿼터스 기술을 위한 고속철도상 Pre-Stressed Concrete(PSC) 교량받침의 누적수평이동거리에 관한 수치해석 (Numerical Analysis of Accumulated Sliding Distance of Pre-Stressed Concrete (PSC) Bridge Bearing for High-Speed Railway for Ubiquitous Technology)

  • 오순택;이동준;이홍주;정신효
    • 디지털산업정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.9-18
    • /
    • 2015
  • Numerical analysis of PSC box bridge bearings for high speed KTX train vehicles has been carried out as a virtual simulation for Ubiquitous Technology. Improved numerical models of bridge, vehicle and interaction between bridge and train are considered, where bending and torsional modes are provided, whereas the exist UIC code is applied by the simplified HL loading. Dynamic and static analysed results are compared to get Dynamic Amplification Factors (D. A. F.) for maximum deflections and bending stresses up to running speed of 500 km/h. Equation from the regression analysis for the D. A. F. is presented. Sliding distance of the bearings for various KTX running speeds is compared with maximum and accumulated distances by the dynamic behaviors of PSC box bridge. Dynamic and static simulated sliding distances of the bearings according to the KTX running speed are proved as a major parameter in spite of the specifications of AASHTO and EN1337-2 focused on the distance by temperature variations.

Methods of analysis for buildings with uni-axial and bi-axial asymmetry in regions of lower seismicity

  • Lumantarna, Elisa;Lam, Nelson;Wilson, John
    • Earthquakes and Structures
    • /
    • 제15권1호
    • /
    • pp.81-95
    • /
    • 2018
  • Most buildings feature core walls (and shear walls) that are placed eccentrically within the building to fulfil architectural requirements. Contemporary earthquake design standards require three dimensional (3D) dynamic analysis to be undertaken to analyse the imposed seismic actions on this type of buildings. A static method of analysis is always appealing to design practitioners because results from the analysis can always be evaluated independently by manual calculation techniques for quality control purposes. However, the equivalent static analysis method (also known as the lateral load method) which involves application of an equivalent static load at a certain distance from the center of mass of the buildings can generate results that contradict with results from dynamic analysis. In this paper the Generalised Force Method of analysis has been introduced for multi-storey buildings. Algebraic expressions have been derived to provide estimates for the edge displacement ratio taking into account the effects of dynamic torsional actions. The Generalised Force Method which is based on static principles has been shown to be able to make accurate estimates of torsional actions in seismic conditions. The method is illustrated by examples of two multi-storey buildings. Importantly, the black box syndrome of a 3D dynamic analysis of the building can be circumvented.