• Title/Summary/Keyword: Torsional Wave

Search Result 95, Processing Time 0.025 seconds

Synthetic Phase Tuning Technique for the Transduction of a Specific Ultrasonic Torsional Mode in a Pipe (배관에서의 특정 비틀림 초음파 모드 송수신을 위한 합성 위상 조절 기법)

  • Kim, Hoe Woong;Kwon, Young Eui;Joo, Young Sang;Kim, Jong Bum;Kim, Yoon Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2013
  • This study newly presents a synthetic phase tuning technique to suppress the unwanted torsional mode while enhancing the desired torsional mode in a pipe. Specifically, we aim at the enhancement of the first torsional mode and the suppression of the undesired, second torsional mode. Earlier efforts were to enhance the desired wave mode only in the hope that the enhancement results in the suppression of the unwanted wave mode. Unlike these efforts, the suggested technique makes the complete cancellation of the unwanted wave mode but it is shown to enhance the desired first mode for torsional wave problems. In the present study, the synthetic phase tuning is developed for the cancellation of the unwanted wave mode, meaning that the number of necessary experimental equipments is reduced. Simulation and experiment were carried out to check the effectiveness of the proposed method. As an application of the suggested technique, we investigated the reflection and mode conversion characteristics of the first torsional mode according to the step thickness variation in a stepped pipe.

Generation and Detection of Torsional Waves in a Rotating Shaft Using a Magnetostrictive Patch Array (자기변형 패치 배열을 이용한 회전축에서의 비틀림파 발생 및 감지)

  • Cho Seung-Hyun;Han Soon-Woo;Park Chan-Il;Kim Yoon-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.3 s.246
    • /
    • pp.342-348
    • /
    • 2006
  • A new magnetostrictive patch array transducer for the generation and detection of torsional waves is developed fur the on-line health monitoring of rotating shafts. Even though the torsional wave is useful in nondestructive evaluation due to its non-dispersive property, a transducer generating torsional waves in rotating shafts has not been developed so far. In this research, a torsional wave transducer using the magnetostrictive effect is newly developed. By bonding an away of magnetostrictive rectangular patches on the outer surface of the shaft at an oblique angle of $45^{\circ}$ and encircling the array by a solenoid coil, we have successfully generated and measured torsional waves by the developed transducer. Several experiments were carried out to check the transducer performance.

The generation of torsional waves and the pipe diagnosis using magnetostrictive transducers (자왜 트랜스듀서를 이용한 유도 비틀림파의 발생 및 배관의 이상진단)

  • 박찬일;한순우;조승현;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.544-548
    • /
    • 2003
  • The objective of this investigation is to develop an efficient method to generate and measure torsional waves in non-ferromagnetic waveguides by using magnetostrictive transducers. In existing methods using a nickel strip that is attached circumferentially to the test specimen such as aluminum pipes, large current input to the magnetostrictive transducer often generates undesired wave modes in addition to desired torsional wave. However, we propose an improved method to generate the torsional waves without being accompanied by other undesirable wave modes regardless of the input current magnitude. The specific transducer configuration and its performance will be presented in the present investigation.

  • PDF

Research for Step Motor using Piezoelectric Torsional Actuator (압전회전작동기를 이용한 스텝모터에 관한 연구)

  • Kim, Jun-Hyuk;Chung, Dal-Do;Kim, Jae-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.279-282
    • /
    • 2004
  • In this paper, A new type of piezoelectric step motor using piezoelectric torsional actuator and a pair of one-way clutch bearing is designed, manufactured and tested. The torsional actuator consists of 16-polygonal tube that can produce angular displacement using shear mode of piezoceramic. One-way clutch bearing convert oscillation of torsional actuator into continuous rotation. After performance testing of torsional actuator, the optimum condition for driving motor is investigated in terms of wave shape, excitation frequency and electrical field. The performance of the motor is experimentally evaluated. As a result, square wave has larger rotation speed than sin wave, and the maximum rotation speed of 57 rpm is measured at 3850 Hz and 100V/mm.

  • PDF

A Study on MsS Guided Wave Scattering from Defects (MsS Guided Wave를 이용한 결함 신호의 분석에 관한 연구)

  • Choi, Boo-Il;Cho, Youn-Ho;Lee, Joon-Hyun;Shin, Dong-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2009
  • An investigation has been made on the relationship between characteristics of torsional mode signal in MsS and SH mode signal in BEM modeling for the defect of stainless steel pipe. In order to compare torsional mode signal with SH mode signal of defect in stainless steel pipe, specimens were made by changing size of depth and width along to circumferential direction 360 degrees. All the defects was detected by torsional mode signal of MsS, especially according to the change of depth size, amplitude of signal was changed. But width change for the circumferential defects has no certain tendency. SH mode signal of BEM modeling shows similar results with torsional mode, with change makes amplitude variation of signal. In this paper, the characteristics of torsional mode and SH mode signals were found. It is possible to predict the circumferential defects for the pipe by SH mode modeling.

The Generation of Torsional Waves and the Pipe Diagnosis Using Magnetostrictive Transducers (자기변형 트랜스듀서를 이용한 유도 비틀림파의 발생 및 배관의 이상진단)

  • 김윤영;박찬일;한순우;조승현
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.2
    • /
    • pp.144-149
    • /
    • 2004
  • The objective of this investigation is to develop an efficient method to generate and measure torsional waves in non-ferromagnetic waveguides by using magnetostrictive transducers. In existing methods using a nickel strip that is attached circumferentially to the test specimen, large current input to the magnetostrictive transducer often generates undesired wave modes in addition to the desired torsional wave. However, we propose a new method to generate the torsional waves without being accompanied with other undesirable wane modes regardless of the input current magnitude. The specific transducer configuration is suggested and its performance is also checked through a series of experiments.

Scattering of torsional surface waves in a three layered model structure

  • Gupta, Shishir;Pati, Prasenjit;Mandi, Anand;Kundu, Santimoy
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.443-457
    • /
    • 2018
  • In this article, a comparative study has been made to investigate the scattering behaviour of three layered structure model on torsional surface wave. For such model intermediate layer is taken as fiber reinforced composite, resting over a dry sandy Gibson substratum and underlying by different anelastic media. We consider two distinct mediums for topmost layer. In the first case, topmost layer has been taken as fluid saturated homogeneous porous layer, while in the second case the fluid saturated porous layer has been replaced by a transversely isotropic layer. Simple form expression for the secular equation of torsional surface wave has been worked out in both the cases by executing specific boundary conditions, which comprises Whittaker's function and its derivative, for imminent result that have been elaborated asymptotically. Some special cases have been constituted which are in excellent compliance with recorded literatures. For the sake of comparative study, numerical estimation and graphical illustration have been accomplished to identify the effects of the width ratio of the layers, Biot's gravity parameter, sandy parameter, porosity parameter and other heterogeneity parameters corresponding to the layers and half spaces, horizontal compressive and tensile initial stress on the phase velocity of torsional surface wave.

Stress evaluation of tubular structures using torsional guided wave mixing

  • Ching-Tai, Ng;Carman, Yeung;Tingyuan, Yin;Liujie, Chen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.639-648
    • /
    • 2022
  • This study aims at numerically and experimentally investigating torsional guided wave mixing with weak material nonlinearity under acoustoelastic effect in tubular structures. The acoustoelastic effect on single central frequency guided wave propagation in structures has been well-established. However, the acoustoelastic on guided wave mixing has not been fully explored. This study employs a three-dimensional (3D) finite element (FE) model to simulate the effect of stress on guided wave mixing in tubular structures. The nonlinear strain energy function and theory of incremental deformation are implemented in the 3D FE model to simulate the guided wave mixing with weak material nonlinearity under acoustoelastic effect. Experiments are carried out to measure the nonlinear features, such as combinational harmonics and second harmonics in related to different levels of applied stresses. The experimental results are compared with the 3D FE simulation. The results show that the generation combinational harmonic at sum frequency provides valuable stress information for tubular structures, and also useful for damage diagnosis. The findings of this study provide physical insights into the effect of applied stresses on the combinational harmonic generation due to wave mixing. The results are important for applying the guided wave mixing for in-situ monitoring of structures, which are subjected to different levels of loadings under operational condition.

Torsional wave in an inhomogeneous prestressed elastic layer overlying an inhomogeneous elastic half-space under the effect of rigid boundary

  • Kakar, Rajneesh
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.753-766
    • /
    • 2015
  • An investigation has been carried out for the propagation of torsional surface waves in an inhomogeneous prestressed layer over an inhomogeneous half space when the upper boundary plane is assumed to be rigid. The inhomogeneity in density, initial stress (tensile and compressional) and rigidity are taken as an arbitrary function of depth, where as for the elastic half space, the inhomogeneity in density and rigidity is hyperbolic function of depth. In the absence of heterogeneities of medium, the results obtained are in agreement with the same results obtained by other relevant researchers. Numerically, it is observed that the velocity of torsional wave changes remarkably with the presence of inhomogeneity parameter of the layer. Curves are compared with the corresponding curve of standard classical elastic case. The results may be useful to understand the nature of seismic wave propagation in geophysical applications.

Propagation Speed of Torsional Waves in a Circular Rod with Harmonically Varying Material Properties

  • Kim, Jin-Oh
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1E
    • /
    • pp.43-47
    • /
    • 2000
  • The paper describes a theoretical study on the speed of torsional elastic waves propagating in a circular rod whose material properties vary periodically as harmonic functions of the axial coordinate. An approximate solution for the phase speed has been obtained by using the perturbation technique for sinusoidal modulation of small amplitude. This solution shows that the wave speed in the nonuniform rod is dependent on the wave frequency as well as the periodic variation of the material properties. It implies that the torsional waves considered in this paper are dispersive even in the fundamental mode.

  • PDF