• Title/Summary/Keyword: Torsional Moment

Search Result 238, Processing Time 0.024 seconds

Hydroelastic Responses for a Ship Advancing in Waves (파랑중 전진하는 선박의 유탄성 응답)

  • 이호영;임춘규;정형배
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

Elastic Local Buckling of Orthotropic Open Section Compression Members with Asymmetric Edge Stiffeners (비대칭 연단보강재가 설치된 직교이방성 개방단면 압축재의 탄성국부좌굴)

  • 윤순종;정상균
    • Composites Research
    • /
    • v.14 no.4
    • /
    • pp.1-7
    • /
    • 2001
  • This paper presents the results of an analytical investigation pertaining to the elastic local buckling behavior of asymmetric edge stiffened orthotropic open section structural member under uniform compression. The asymmetric edge stiffener is considered as a beam element neglecting its torsional rigidity. We suggested the analytical model of asymmetric edge stiffeners which is composed of a strip of flange plate, equal width of edge stiffener, and a plate attached at the flange end, and computed the moment of inertia of the stiffener about an axis through the centroid of the ensuing cross-section. Using the derived equation, the local buckling coefficients of asymmetrically edge stiffened orhtotropic I-section columns are predicted and the results are presented in a graphical form.

  • PDF

Seismic behavior of steel column-base-connection equipped by NiTi shape memory alloy

  • Jamalpour, Reza;Nekooei, Masoud;Moghadam, Abdolreza Sarvghad
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.109-120
    • /
    • 2017
  • The behavior of moment resistant steel structures depends on both the beam-column connections and columns foundations connections. Obviously, if the connections can meet the adequate ductility and resistance against lateral loads, the seismic capacity of these structures will be linked practically to the performance of these connections. The shape memory alloys (SMAs) have been most recently used as a means of energy dissipation in buildings. The main approach adopted by researchers in the use of such alloys is firstly bracing, and secondly connecting the beams to columns. Additionally, the behavior of these alloys is modeled in software applications rarely involving equivalent torsional springs and column-foundation connections. This paper attempts to introduce the shape memory alloys and their applications in steel structural connections, proposing a new steel column-foundation connection, not merely a theoretical model but practically a realistic and applicable model in structures. Moreover, it entails the same functionality as macro modeling software based on real behavior, which can use different materials to establish a connection between the columns and foundations. In this paper, the suggested steel column-foundation connection was introduced. Moreover, exploring the seismic dynamic behavior under cyclic loading protocols and the famous earthquake records with different materials such as steel and interconnection equipment by superelastic shape memory alloys have been investigated. Then, the results were compared to demonstrate that such connections are ideal against the seismic behavior and energy dissipation.

Pre-buckling deflection effects on stability of thin-walled beams with open sections

  • Mohri, F.;Damil, N.;Potier-Ferry, M.
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.71-89
    • /
    • 2012
  • The paper investigates beam lateral buckling stability according to linear and non-linear models. Closed form solutions for single-symmetric cross sections are first derived according to a non-linear model considering flexural-torsional coupling and pre-buckling deformation effects. The closed form solutions are compared to a beam finite element developed in large torsion. Effects of pre-buckling deflection and gradient moment on beam stability are not well known in the literature. The strength of singly symmetric I-beams under gradient moments is particularly investigated. Beams with T and I cross-sections are considered in the study. It is concluded that pre-buckling deflections effects are important for I-section with large flanges and analytical solutions are possible. For beams with T-sections, lateral buckling resistance depends not only on pre-buckling deflection but also on cross section shape, load distribution and buckling modes. Effects of pre-buckling deflections are important only when the largest flange is under compressive stresses and positive gradient moments. For negative gradient moments, all available solutions fail and overestimate the beam strength. Numerical solutions are more powerful. Other load cases are investigated as the stability of continuous beams. Under arbitrary loads, all available solutions fail, and recourse to finite element simulation is more efficient.

A Study on the Axial Vibration Characteristics of the Super Large 2 Stroke Low Speed Diesel Engine with 14 Cylinders (14 실린더를 갖는 초대형 저속 2행정 디젤엔진의 종진동 특성에 관한 연구)

  • Lee, D.C.;Kim, T.U.;Yu, J.D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.376-381
    • /
    • 2009
  • The increasing needs for higher cargo capacity in the container vessels' fleet has led to ship builder's demand for higher power output rating engine to meet the propulsion requirement, thus, leading to the development of super large two stroke low speed diesel engines. This large sized bore engines with more than 12 cylinders are capable of delivering power output up to more than 100,000 bhp at maximum continuous rating. The thrust variation force due to axial vibration occurring in propulsion shafting of these ships are transmitted to ship structure via thrust bearing. This force may vibrate the super structure of ship in the fore-aft direction and the fatigue strength of crank shaft can be decreased by additional bending stress increase in crank shaft pin and journal. In this paper, the axial vibration of propulsion shafting system on the 14RT-flex96C super large diesel engine with 14 cylinders is identified by theoretical analysis and vibration measurement.

  • PDF

Framework for a general section designer software component

  • Anwar, Naveed;Kanok-Nukulchai, Worsak
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.303-324
    • /
    • 2004
  • The Component-Based Software Development (CBSD) has established itself as a sound paradigm in the software engineering discipline and has gained wide spread acceptance in the industry. The CBSD relies on the availability of standard software components for encapsulation of specific functionality. This paper presents the framework for the development of a software component for the design of general member cross-sections. The proposed component can be used in component-based structural engineering software or as a stand-alone program developed around the component. This paper describes the use-case scenarios for the component, its design patterns, object models, class hierarchy, the integrated and unified handling of cross-section behavior and implementation issue. It is expected that a component developed using the proposed patterns and model can be used in analysis, design and detailing packages to handle reinforced concrete, partially prestressed concrete, steel-concrete composite and steel sections. The component can provide the entire response parameters of the cross section including determination of geometric properties, elastic stresses, flexural capacity, moment-curvature, and ductility ratios. The component can also be used as the main computational engine for stand-alone section design software. The component can be further extended to handle the retrofitting and strengthening of cross-sections, shear and torsional response, determination of fire-damage parameters, etc.

Analysis of rotational end restraint for cross-beams of railway through truss bridges

  • Siekierski, Wojciech
    • Steel and Composite Structures
    • /
    • v.35 no.1
    • /
    • pp.29-41
    • /
    • 2020
  • Cross-beams of modern through truss bridges are connected to truss chord at its nodes and between them. It results in variable rotational end restraint for cross-beams, thus variable bending moment distribution. This feature is captured in three-dimensional modelling of through truss bridge structure. However, for preliminary design or rapid assessment of service load effects such technique of analysis may not be available. So an analytical method of assessment of rotational end restraint for cross-beam of through truss bridges was worked out. Two cases - nodal cross-beam and inter-nodal cross-beam - were analyzed. Flexural and torsional stiffness of truss members, flexural stiffness of deck members and axial stiffness of wind bracing members in the vicinity of the analyzed cross-beam were taken into account. The provision for reduced stiffness of the X-type wind bracing was made. Finally, general formula for assessment of rotational end restraint was given. Rotational end restraints for cross-beams of three railway through truss bridges were assessed basing on the analytical method and the finite element method (three-dimensional beam-element modelling). Results of both methods show good agreement. The analytical method is able to reflect effects of some structural irregularities. On the basis of the obtained results the general values of rotational end restraint for nodal and inter-nodal cross-beams of railway through truss bridges were suggested.

Modal Parameter variation of Steel Cable-stayed Bridge Considering Solar Radiation (일사에 의한 온도변화에 따른 강사장교의 동적특성 변화)

  • Kim Sang-Hyo;Jo Kwang-Il;Park Ju-Yang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.1040-1047
    • /
    • 2006
  • Bridges are exposed to constantly changing weather conditions and temperature. The temperature change is induced by a change in atmospheric temperature and solar radiation. Atmospheric temperature change acts on the whole structure. Thus, it is relatively easy to consider in the design. Solar radiation, however, causes un-uniform temperature distribution in the structure, depending on the shape of the structure and its shadows. Un-uniform temperature distribution causes a torsional moment in bridge section and a deformation of bridge. A deformation can make differences of dynamic and static behavior of bridge. In this study, the method for analysis of static and dynamic behavior considering deformation and changes of material properties due to temperature variation was developed. By this method, it is found from dynamic analysis results that the change of frequency in analysis model is similar with test results of public used cable-stayed bridge. When a temperature goes down, a frequency goes up. And it is found that the change of frequency is affected by the change of material properties.

  • PDF

Fatigue life prediction of horizontally curved thin walled box girder steel bridges

  • Nallasivam, K.;Talukdar, Sudip;Dutta, Anjan
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.387-410
    • /
    • 2008
  • The fatigue damage accumulation rates of horizontally curved thin walled box-girder bridge have been estimated from vehicle-induced dynamic stress history using rain flow cycle counting method in the time domain approach. The curved box-girder bridge has been numerically modeled using computationally efficient thin walled box-beam finite elements, which take into account the important structural actions like torsional warping, distortion and distortional warping in addition to the conventional displacement and rotational degrees of freedom. Vehicle model includes heave-pitch-roll degrees of freedom with longitudinal and transverse input to the wheels. The bridge deck unevenness, which is taken as inputs to the vehicle wheels, has been assumed to be a realization of homogeneous random process specified by a power spectral density (PSD) function. The linear damage accumulation theory has been applied to calculate fatigue life. The fatigue life estimated by cycle counting method in time domain has been compared with those found by estimating the PSD of response in frequency domain. The frequency domain method uses an analytical expression involving spectral moment characteristics of stress process. The effects of some of the important parameters on fatigue life of the curved box bridge have been studied.

Dynamic Mode Analysis of Thin Walled Closed Section Beams under Warping Conditions (Warping 조건하에서 박판 폐단면 보의 동적 모드 해석)

  • Yu, Hwan-Shin;Chun, Dong-Joon
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.367-374
    • /
    • 2012
  • A dynamic simulation and test of frame with thin walled closed section beams considering warping conditions have been performed. When a beam is subjected under torsional moment, the cross section will deform an warping as well as twist. For some thin-walled sections warping will be large, and accompanying warping restraint will induce axial and shear stresses and reduce the twist of beam which stiffens the beam in torsion. This paper presents that an warping restraint factor in finite element model effects the behavior of beam deformation and dynamic mode shape. The computer modelling of frame is discussed in linear beam element model and linear thin shell element model, also presents a correlation between computer predicted and actual experimental results for static deflection, natural frequencies and mode shapes of frame.