• Title/Summary/Keyword: Torsional Damping

Search Result 136, Processing Time 0.026 seconds

A study on the calculation of forced axial vibration with damping for the marine diesel engine shafting by the mechanical impedance method (기계적 임피던스법에 의한 박용디젤기관 추진축계의 강제감쇠종진동 계산에 관한 연구)

  • 박현호;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 1987
  • Recently, the problem of the axial vibration for the marine diesel engine shafting has become important due to the increased exciting forces resulting from high supercharging and large output, and the reduced natural frequencies resulting from long stroke and show speed. The effects of the axial vibration on the propulsion shafting induce cracks of the connecting point of crankpin and crankarm, the severe wear of thrust bearing, the fatigue failure of each fixing bolt and jointed parts, the hull and local hull vibrations, and also the wear and the noise due to intense hammering phenomena of thrust collar. Therefore, each classification society requires the calculation of natural frequencies and their amplitudes and also measurements of the forced damped axial vibration. At present, the technical and theoretical level is at the stage of estimating the resonant points and their maximum displacements, but the estimated displacements of the resonant points are not so reliable as the torsional one. In this study, induced stresses and amplitudes of the forced damped axial vibration are calculated. For this purpose, the equation of forced axial vibration with damping for the propulsion shafting is derived and its steady-state response is calculated by the mechanical impedance method. A computer program for above calculations is developed. The measured values are analyzed and the calculated results are compared with the measured ones. They show fairly good agreements and the reliability of developed program is confirmed.

  • PDF

Effect of various aspects on the seismic performance of a curved bridge with HDR bearings

  • Gupta, Praveen K.;Ghosh, Goutam
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.427-444
    • /
    • 2020
  • The performance of an isolated horizontally curved continuous bridge with High Damping Rubber (HDR) Bearings has been investigated under seismic loading conditions. The effectiveness of response controls of the bridge by HDR bearings for various aspects viz. variation in ground motion characteristics, multi-directional effect, level of earthquake shaking, varying incidence angle, have been determined. Three recorded ground motions, representative of historical earthquakes along with near-field, far-field and forward directivity effects, have been considered in the study. The efficacy of the bearings with bidirectional effect considering interaction behavior of bearing and pier has also been investigated. Modeling and analysis of the bridge have been done by finite element approach. Sensitivity studies of the bridge response with respect to design parameters of the bearings for the considered ground motions have been performed. The importance of the nonlinearity of HDR bearings along with crucial design parameters has been identified. It has been observed that the HDR bearings performed well in different variations of ground motions, especially for controlling torsional moment. However, the deck displacement has been found to be increased significantly in case of Turkey ground motions, considering forward directivity effect, which needs to be paid more attention from designer point of view.

Experimental investigation of amplitude-dependent self-excited aerodynamic forces on a 5:1 rectangular cylinder

  • Wang, Qi;Wu, Bo;Liao, Hai-li;Mei, Hanyu
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.73-80
    • /
    • 2022
  • This paper presents a study on amplitude-dependent self-excited aerodynamic forces of a 5:1 rectangular cylinder through free vibration wind tunnel test. The sectional model was spring-supported in a single degree of freedom (SDOF) in torsion, and it is found that the amplitude of the free vibration cylinder model was not divergent in the post-flutter stage and was instead of various stable amplitudes varying with the wind speed. The amplitude-dependent aerodynamic damping is determined using Hilbert Transform of response time histories at different wind speeds in a smooth flow. An approach is proposed to extract aerodynamic derivatives as nonlinear functions of the amplitude of torsional motion at various reduced wind speeds. The results show that the magnitude of A2*, which is related to the negative aerodynamic damping, increases with increasing wind speed but decreases with vibration amplitude, and the magnitude of A3* also increases with increasing wind speed but keeps stable with the changing amplitude. The amplitude-dependent aerodynamic derivatives derived from the tests can also be used to estimate the post-flutter response of 5:1 rectangular cylinders with different dynamic parameters via traditional flutter analysis.

Calculation of Damping Ratio Using Non-Linear Soil Models and Comparison between Measured and Predicted Data (흙의 비선형 모델을 이용한 감쇠비 산정 및 비교)

  • Lee, Hyoung-Kyu;Bae, Yoon-Shin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2011
  • Several theoretical soil nonlinear models to predict damping ratio, which is one of the typical dynamic properties of soils, it is impractical to predict damping ratio. The resonant column and torsional shear test(RC-TS) is used to represent the dynamic behavior of soils from intermediate to medium shear strains. A limitation of RC-TS is measure precise shear strain in large strains and the modified equivalent radius($R_{eq}$) was obtained using both modified hyperbolic model and Ramberg-Osgood model. Bonneville clays were tested using RC-TS test to obtain rotation and torque. The measured rotation and torque were then compared with calculated rotation and torque using curve-fitting method. Then, the nonlinear soil model parameters were obtained and the equivalent radius was calculated using the model parameters.

Vehicular Impact Loading on with Laminated Rubber Bearing (탄성받침을 사용한 도로교의 충격하중특성 분석)

  • 김상효;허진영;신용준;이용선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.230-237
    • /
    • 2000
  • The purpose of this study is to evaluate the dynamic behavior of highway bridge due to moving vehicle load, considering the effect of laminated rubber bearing. Dynamic behaviors of bridge considering the effect of bearings are studied with 3-dimensional bridge and vehicle models. To analyze the effect of bearings on the dynamic behaviors of superstructures of bridges, laminated rubber bearing is modeled as 3-dimensional frame element with equivalent stiffness and damping, and the models are included in the bridge analysis model. The results from the analytical models with laminated rubber bearing show a significant effects on dynamic responses and more complex vibration characteristics compared with the results from the bridge with pot bearings. Generally, larger dynamic amplification factors are obtained in the case of laminated rubber bearing, which is mainly due to the smaller torsional stiffness of the bridge with laminated rubber bearing. It can be recommended that were careful consideration on the vibration of bridges and dynamic load allowance in design are needed when adopting laminated rubber bearing.

  • PDF

Dynamic behavior of footbridges strengthened by external cable systems

  • Raftoyiannis, Ioannis G.;Michaltsos, George T.
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.595-608
    • /
    • 2018
  • This paper deals with the lateral - torsional motion of bridges provided with external cables acting as dampers under the action of horizontal dynamic loads or of walking human crowd loads. A three dimensional analysis is performed for the solution of the bridge models. The theoretical formulation is based on a continuum approach, which has been widely used in the literature to analyze bridges. The resulting equations of the uncoupled motion are solved using the Laplace Transformation, while the case of the coupled motion is solved through the use of the potential energy. Finally, characteristic examples are presented and useful results are obtained.

A Study on the Vibration Characteristics of the Composite Sandwich Beams for High-Speed Heddle Frame (고속 헤들 프레임용 복합재료 샌드위치 보의 진동 특성에 관한 연구)

  • 이창섭;오제훈;이대길
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.120-125
    • /
    • 2000
  • A heddle frame is the major part of a loom that produces woven cloth by insertion of weft yarns between warp yams. Warp yarns are manipulated by many heddles fixed in a heddle frame. Recently, the up and down speed of heddle frames has been increased much for the increase of productivity, which induces higher inertial stresses and vibrations in the heddle frame. The heddle frame has the rectangular cross-section. For the design of box type beams of rectangular cross-section, extensional stiffness EA, flexural stiffness El, and torsional stiffness GJ as well as the vibration characteristics are important and should be simultaneously considered. Tn this paper, the vibration characteristics of the composite and the composite sandwich beams for high-speed heddle frame were tested by impulse frequency response.

  • PDF

An Investigation of Shape Factor Effects on Elastic Modulus with Acoustic Resonance Method (음향공진법에서의 형상계수 영향에 관한 고찰)

  • 최영식;박명균;박세만
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.795-798
    • /
    • 2002
  • In this investigation, experimental attempts were made to observe and determine the variations in elastic of the PVC depending on the amounts of MBS added to the mixture, PVC/MBS, and also on the thicknesses of the specimens. An acoustic resonance technique was used for the tests in this investigation. It serves as a method to characterize properties of materials set in vibrational motions, which is initiated by low level stresses generated by externally supplied acoustic energy. Substantial variations were observed in the test results with the addition of the MBS to the PVC. It was found that the magnitudes of elastic constants decrease when MBS rubber was added in the range up to 9 phr and the shape factor effect in torsional vibration is more significant than the shape factor effect in flexural vibration.

  • PDF

3 Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System

  • Park, Jin-Bae;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.2-170
    • /
    • 2001
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system for the reduction of the vibration are proposed. In the respect of modeling, the spin-coater system is composed of components of servomotor, belt, spindle, and a supported base. Each component is defined and combined modeling is derived to 3dimensional equations. Verification of modeling is verified by experimental values of actual system in the frequency domain. By direct differentiation the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, torsional stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables ...

  • PDF

Dual Mass Flywheel 시스템의 설계파라미터에 관한 연구

  • 송준혁
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.167-172
    • /
    • 1996
  • A Dual Mass Flywheel system is a evolution to the reduction of torsional vibration and impact noise occuring in powertrain when a vehicle is eit-her moving or idling. The name already explains what it is : The mass of the conventional single mass flywheel is divided. One section continues to belong to the mass moment of inertia of the engine-side. The ot-her section increass the mass moment of inertia of the transmission-side. The two masses are connected via a spring /damping system. This reduces the speed at which the dreaded resonance occurs to below idle speed. Since 1984 Dual Mass Flywheel has been de-veloped again and again. But the prosidures of de-velopment of D.M.F system didn't have had differe-nce from conventional clutch system's trial and err-or This paper presents the method for systematical design of D.M.F system with demensionless design variables of D.M.F system mass ratio between two flywheels λ. natual frequency rate of two flywheel s, ${\gamma}$and viscosity coefficient ζ. And experimental re-sults are used to prove these theoretical results.

  • PDF