• Title/Summary/Keyword: Torsion stress

Search Result 199, Processing Time 0.028 seconds

Deformation Behavior and Dynamic Recrystallization of Torsion-Tested Alloy 718 (Alloy718의 비틀림변형과 동적재결정)

  • Park, N.K.;Kim, C.H.;Kim, N.Y;Lee, D.G.;Yeom, J.T.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.591-596
    • /
    • 2006
  • Torsion testing was employed to investigate the deformation and recrystallization behavior of coarse-grained Alloy 718, and the results are compared with the compression testing results. Mechanical testing was conducted on bulk Alloy718 samples within the temperature ranges, $1000^{\circ}C{\sim}1100^{\circ}C$. The strain gradient formed in the torsion specimens resulted in a recrystallization behavior which varied along the radial direction from the center to the surface. The flow curves based on effective stress and effective strain as obtained by Fields and Backofen's isotropic deformation theory and the dynamic recrystallization within the compression tested samples and torsion tested samples are different. The different deformation and recrystallization behavior can be rationalized by the fact that the deformation in the coarse-grained torsion specimens is not uniform and thus the strain gradient within the specimens cannot be analytically predicted by FE simulation. Thus, the extent of recrystallization cannot be properly predicted by the established recrystallization equations based on compression tests.

Stress Analysis of Rectangular Bar under Torsion (비틀림을 받는 사각주의 응력해석)

  • Kim, Dong-Hyun;Ji, Joong-Jo;Yoon, Kab-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.4
    • /
    • pp.53-63
    • /
    • 1986
  • In this study, the stress distribution of rectangular bar under torsion, when warping of both ends is free or constrained, is investigated. Method of separation of variable and Fourier Series are used for the theoretical analysis, and 3dimensional photoelastic stress-freezing method for experimental analysis. The main results are as follows; 1) In the case of warping-constrained rectangular bar, the normal stresses are negligible because they are less then 0.5% of the shear stresses. The maximum normal stress is placed on the point of y=0.61 b when b/a=1 and it gradually moves to the corner y=b when the value of b/a is increased. 2) According to increase of the value of b/a, on the crossection, the maximum shear stress is placed on the middle point of the long side (x=${\pm}a$, y=0) when warping of both ends is free but the middle of the short side (x=0, y=${\pm} b$) when warping is constrained. The stress distribution is straight line when warping is constrained, namely, the stress distribution is proportional to the distance from the axis of centroid, but parabolic when warping is free. 3) The values of the combined stress of warping-constrained bar, if the influence of the loaded point is neglected, are generally smaller than those of warping-free.

  • PDF

The Stress -Strain Behavior of Sand in Torsion Shear Tests (비틀림전단시험에 의한 모래의 응력 -변형률 거동)

  • 남정만;홍원표
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.65-82
    • /
    • 1993
  • A series of torsion shear tests were performed to study the drained stress -strain behavior of medium dense Santa Monica Beach sand under various stress paths. The torque was applied to both clockwise and counterclockwise directions at the end of hollow cylinder specimen. Two clip gages had been previously used to measure the changes in wall thickness and diameter of the specimen. In this study, however, the lateral strain was determined by measuring volume changes in specimen. Specimens were prepared by the air pluviation method and gaseous carbon deozide( CO2) was used to measure precisely volumetric strain in specimen. The drained stress -strain behavior of cohesionless Boils during rotation of principal stress directions was analysed based on the results of torsion shear tests. The coupling of mal stress were applied. It was also found from the test results that the atrial strain at failure decreased with increasing value.

  • PDF

Torsional Analysis of RC Beam Considering Tensile Stiffening of Concrete (콘크리트의 인장강성을 고려한 RC보의 비틀림 해석)

  • 박창규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.167-172
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of Present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

  • PDF

Torsional Analysis of RC Beam Using Average Strains (평균변형률을 이용한 RC보의 비틀림 해석)

  • Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.157-165
    • /
    • 2002
  • Nonlinear analysis of the reinforced concrete beam subjected to torsion is presented. Seventeen equations involving seventeen variables are derived from the equilibrium equation, compatibility equation, and the material constitutive laws to solve the torsion problem. Newton method was used to solve the nonlinear simultaneous equations and efficient algorithms are proposed. Present model covers the behavior of reinforced concrete beam under pure torsion from service load range to ultimate stage. Tensile resistance of concrete after cracking is appropriately considered. The softened concrete truss model and the average stress-strain relations of concrete and steel are used. To verify the validity of present model, the nominal torsional moment strengths according to ACI-99 code and the ultimate torsional moment by present model are compared to experimental torsional strengths of 55 test specimens found in literature. The ultimate torsional moment strengths by the present model show good results.

Design Consideration of Fish-bone Girder Pier using the Analysis of Torsional Behavior (조립식 경골잔교(Fish-bone Girder Pier)의 비틀림 거동분석을 통한 설계 시 고려사항)

  • Yun, Kyung-Min;Yoon, Ki-Yong;Lee, Chin-Ok;Lim, Nam-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.561-568
    • /
    • 2014
  • A modular fish-bone girder pier consists of one main girder system named as "Spine Girder". Therefore, this pier can be most affected by torsion as well as flexural bending. The design considerations of the fish-bone girder pier are proposed to assure the reasonable design in this study. In order to investigate the behavior characteristics, structural analysis F.E model is developed, and the verification of the developed model is performed by comparison with experimental data. From the investigation of the structural behavior, the vertical stiffener is required at the bottom of bone-beams to prevent the excessive local stress. Also, it is found that the normal stress of the flange and the shear stress of the web and flange are dominantly affected by the warping torsion and pure torsion, respectively.

A Convergence Study by Structural Analysis on Torsion Beam Suspension of Rear Wheel (후륜 토션빔 서스펜션에 대한 구조해석에 의한 융합연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.187-192
    • /
    • 2019
  • In this study, the structural and fatigue analyses were carried out according to the configuration of rear wheel suspension of torsion beam. Three types of models similar to the actual torsional beam suspension are analyzed and we will find out which one is best on strength. The models of torsion beam suspension were designed in three types of models A, B and C through CATIA program and the results of structural and fatigue analyses were obtained by using the ANSYS program. We will confirm which model is better structurally than other models. According to the analysis results, the deformation happens to be the largest in the middle, and model B has the least deformation compared to model A and C. Similarly, model B is shown to have the smallest result at equivalent stress. So, model B is judged to be the best in terms of its strength, and it is thought to be the most efficient to converge into art design at the suspension design with a torsion beam of rear wheel.

A Study on the Design of Composites Shaft for Small Ship by Filament Winding Process (필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계에 관한 연구)

  • 배창원;임철문;왕지석;김윤해
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.193-196
    • /
    • 2001
  • The purpose of this study is the design of composite shaft which is wound by Filament Winding method. Classical laminated plate theory was used for analyzing the stress, and for structure design. The diameter and thickness of composite shaft were calculated by this theory. The result that if tensile stress was zero, torsion stress was a certain value below 0.4(diameter rate) and torsion strength was the highest value on $45^{\circ}C$(winding angle). In case of $90^{\circ}C$(winding angle), we have to consider the torsional monent when the composites shaft was load.

  • PDF

A Study on the Design of Composites Shaft for Small Ship by Filament Winding Process (필라멘트 와인딩 공법에 의한 소형 선박용 복합재료 축 설계에 관한 연구)

  • 배창원;임철문;왕지석;김윤해
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.140-145
    • /
    • 2001
  • The purpose of this study is the design of composite shaft which is wound by Filament Winding method. Classical laminated plate theory was used for analyzing the stress, and for structure design. The diameter and thickness of composite shaft were calculated by this theory. The result that if tensile stress was zero, torsion stress was a certain value below 0.4(diameter rate) and torsion strength was the highest value on 45$^{\circ}$(winding angle). In case of 90$^{\circ}$(winding angle), we have to consider the torsional moment when the composites shaft was load.

  • PDF

Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test (이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향)

  • 정해식;미원우삼;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.363-372
    • /
    • 2004
  • Double torsion (DT) tests were carried out to investigate the influence of the geometry of guide groove on stress corrosion index of Kumamoto andesite. The fracture toughness was measured in the constant displacement rate, which was set to 2.07 MN/m$^{3}$2/ in average regardless of crack velocity. Stress corrosion indices, n were evaluated using specimens with rectangular, circular and triangular grooves and were 37, 36 and 38 in average, respectively. The n values were constant regardless of the groove geometry, however the DT specimen with triangular groove geometry showed the largest standard deviation in the relationship between crack velocity and stress intensity factor. The DT test was found to be effective in using a rectangular-grooved specimen and the width of the groove must be greater than the average grain size of minerals.