• Title/Summary/Keyword: Torsion, Mechanical

Search Result 203, Processing Time 0.022 seconds

Aeroelastic Phenomena of a Wind Turbine Rotor Blade (풍력발전기 로터 블레이드의 공력탄성학적 현상)

  • Bae, jae-Sung;Hwang, Jai-Hyuk;Ju, Young-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • Aeroelastic phenomena of a wind turbine include stall-induced vibrations and classical flutters. The classical flutter occurs due to coalescence between bending mode and torsion mode. It is typically the aeroelastic instability of an aircraft wing. Different from the classical flutter, the stall-induced vibration is the instability in lead-lag mode due to negative aerodynamic dampings. In the present study, the three degree of freedom aeroelastic model of a wind turbine blade is introduced to characterize and analyze its aeroelastic phenomena. The numerical results show that the aeroelastic stability of flap-lag motion is more unstable than that of flap-pitch motion and the aeroelastic characteristics of lead-lag motion can become unstable as wind speed increases.

Continuous Measurement Technique of Bending Strain Effect on Critical Current in Bi-2223 Tapes (고온초전도 테이프 임계전류의 굽힘변형률 효과 연속측정 기술)

  • Shin, Hyung-Seop;Choi, Ho-Yeon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.298-299
    • /
    • 2005
  • Differently from the tensile, transverse compression and torsion cases, the bending test of HTS tapes requires a lot of time and efforts, since the sample should be mounted successively onto bent sample holders in the order of decreasing radius and measuring the $I_c$ at each step. The influence of repeated cooling and warming experienced during these processes on the $I_c$ degradation can not be ignored. As a result, in this study, particularly. a new one-body type sample holder which provides continuous bending strains at 77K was devised. And, $I_c$ degradation behavior of Bi-2223 tapes under easy bending condition was investigated and compared that with other cases using Goldacker-type bending tester or respective sample holder.

  • PDF

Simulation of superelastic SMA helical springs

  • Mehrabi, Reza;Ravari, Mohammad Reza Karamooz
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.183-194
    • /
    • 2015
  • Shape memory alloy (SMA) helical springs have found a large number of different applications in industries including biomedical devices and actuators. According to the application of SMA springs in different actuators, they are usually under tension and torsion loadings. The ability of SMAs in recovering inelastic strains is due to martensitic phase transformation between austenite and martensite phases. Stress or temperature induced martensite transformation induced of SMAs is a remarkable property which makes SMA springs more superior in comparison with traditional springs. The present paper deals with the simulation of SMA helical spring at room temperature. Three-dimensional phenomenological constitutive model is used to describe superelastic behavior of helical spring. This constitutive model is implemented as a user subroutine through ABAQUS STANDARD (UMAT), and the process of the implementation is presented. Numerical results show that the developed constitutive model provides an appropriate approach to captures the general behavior of SMA helical springs.

The Mechanical Sensitivity at Interfaces between Bone and Interbody Cage of Lumbar Spine Segments (Lumbar spine 의 뼈와 Interbody cage의 접촉면에서 기계공학적 민감성 고찰)

  • Kim Y.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.295-301
    • /
    • 2000
  • It is known that among many factors, relative micromotion at bone/implant interfaces can hinder bone ingrowth into surface pores of an implant. Loading conditions, mechanical properties of spinal materials, friction coefficients at the interfaces and geometry of spinal segments would affect the relative micromotion and spinal stability. A finite clement model of the human lumbar spine segments (L4-L5) was constructed to investigate the mechanical sensitivity at the interfaces between bone and cage. Relative micromotion. Posterior axial displacement. bone stress, cage stress and friction force were predicted in changes of friction coefficients, loading conditions. bone density and age-related material/geometric properties of the spinal segments. Relative micromotion (slip distance in a static loading means relative micromotion in routine activity) at the interfaces increased significantly as the mechanical properties of cancellous bone, annulus fibers or/and ligaments decrease or/and as the friction coefficient at the interfaces decreases. The contact normal force at the interfaces decreased as cancellous bone density decreases or/and as the friction coefficient increases A significant increase of slip distance at anterior annulus occurred with an addition of torsion to compressive preload. Relative micromotion decreased with an increase of disc area. In conclusion. relative micromotion, stress response. Posterior axial displacement and contact normal force are sensitive to the friction coefficient of the interfaces, bone density, loading conditions and age-related geometric/material changes.

  • PDF

MULTI-OBJECTIVE OPTIMIZATION OF THE INNER REINFORCEMENT FOR A VEHICLE'S HOOD CONSIDERING STATIC STIFFNESS AND NATURAL FREQUENCY

  • Choi, S.H.;Kim, S.R.;Park, J.Y.;Han, S.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.337-342
    • /
    • 2007
  • A multi-objective optimization technique was implemented to obtain optimal topologies of the inner reinforcement for a vehicle's hood simultaneously considering the static stiffness of bending and torsion and natural frequency. In addition, a smoothing scheme was used to suppress the checkerboard patterns in the ESO method. Two models with different curvature were chosen in order to investigate the effect of curvature on the static stiffness and natural frequency of the inner reinforcement. A scale factor was employed to properly reflect the effect of each objective function. From several combinations of weighting factors, a Pareto-optimal topology solution was obtained. As the weighting factor for the elastic strain efficiency went from 1 to 0, the optimal topologies transmitted from the optimal topology of a static stiffness problem to that of a natural frequency problem. It was also found that the higher curvature model had a larger static stiffness and natural frequency than the lower curvature model. From the results, it is concluded that the ESO method with a smoothing scheme was effectively applied to topology optimization of the inner reinforcement of a vehicle's hood.

Design and Optimization of Suspension with Optical Flying Head Using Integrated Optimization Frame (통합최적프레임을 사용한 광부상헤드를 탑재한 서스팬션의 최적화)

  • Kim, Ji-Won;Park, Kyoung-Su;Yoon, Sang-Joon;Choi, Dong-Hoon;Park, Young-Pil;Lee, Jong-Soo;Park, No-Cheol
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.161-168
    • /
    • 2005
  • This paper optimizes the optical flying head(OFH) suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. The problem formulation for the optimization is suggested to improve the dynamic compliance of OFH and to shift the resonant frequencies caused tracking errors to high frequency domain. Furthermore, the minimization of the effective suspension mass that leads to decrease the so-called 'lift-off' as the disk-head separation acceleration divided by the suspension load is taken into consideration. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. The advanced suspension that reduces the effective mass of the suspension and increases the resonant frequencies of sway and $2^{nd}$ torsion over 10kHz is achieved by using the integrated optimization frame.

  • PDF

Identification of the Mechanical Resonances of Electrical Drives for Automatic Commissioning

  • Pacas Mario;Villwock Sebastian;Eutebach Thomas
    • Journal of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • The mechanical system of a drive can often be modeled as a two- or three-mass-system. The load is coupled to the driving motor by a shaft able to perform torsion oscillations. For the automatic tuning of the control, it is necessary to know the mathematical description of the system and the corresponding parameters. As the manpower and setup-time necessary during the commissioning of electrical drives are major cost factors, the development of self-operating identification strategies is a task worth pursuing. This paper presents an identification method which can be utilized for the assisted commissioning of electrical drives. The shaft assembly can be approximated as a two-mass non-rigid mechanical system with four parameters that have to be identified. The mathematical background for an identification procedure is developed and some important implementation issues are addressed. In order to avoid the excitation of the system with its natural resonance frequency, the frequency response can be obtained by exciting the system with a Pseudo Random Binary Signal (PRBS) and using the cross correlation function (CCF) and the auto correlation function (ACF). The reference torque is used as stimulation and the response is the mechanical speed. To determine the parameters, especially in advanced control schemes, a numerical algorithm with excellent convergence characteristics has also been used that can be implemented together with the proposed measurement procedure in order to assist the drive commissioning or to achieve an automatic setting of the control parameters. Simulations and experiments validate the efficiency and reliability of the identification procedure.

Application of aerospace structural models to marine engineering

  • Pagani, A.;Carrera, E.;Jamshed, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.3
    • /
    • pp.219-235
    • /
    • 2017
  • The large container ships and fast patrol boats are complex marine structures. Therefore, their global mechanical behaviour has long been modeled mostly by refined beam theories. Important issues of cross section warping and bending-torsion coupling have been addressed by introducing special functions in these theories with inherent assumptions and thus compromising their robustness. The 3D solid Finite Element (FE) models, on the other hand, are accurate enough but pose high computational cost. In this work, different marine vessel structures have been analysed using the well-known Carrera Unified Formulation (CUF). According to CUF, the governing equations (and consequently the finite element arrays) are written in terms of fundamental nuclei that do not depend on the problem characteristics and the approximation order. Thus, refined models can be developed in an automatic manner. In the present work, a particular class of 1D CUF models that was initially devised for the analysis of aircraft structures has been employed for the analysis of marine structures. This class, which was called Component-Wise (CW), allows one to model complex 3D features, such as inclined hull walls, floors and girders in the form of components. Realistic ship geometries were used to demonstrate the efficacy of the CUF approach. With the same level of accuracy achieved, 1D CUF beam elements require far less number of Degrees of Freedom (DoFs) compared to a 3D solid FE solution.

Flutter analysis by refined 1D dynamic stiffness elements and doublet lattice method

  • Pagani, Alfonso;Petrolo, Marco;Carrera, Erasmo
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.291-310
    • /
    • 2014
  • An advanced model for the linear flutter analysis is introduced in this paper. Higher-order beam structural models are developed by using the Carrera Unified Formulation, which allows for the straightforward implementation of arbitrarily rich displacement fields without the need of a-priori kinematic assumptions. The strong form of the principle of virtual displacements is used to obtain the equations of motion and the natural boundary conditions for beams in free vibration. An exact dynamic stiffness matrix is then developed by relating the amplitudes of harmonically varying loads to those of the responses. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick-Williams algorithm to carry out free vibration analyses. According to the doublet lattice method, the natural mode shapes are subsequently used as generalized motions for the generation of the unsteady aerodynamic generalized forces. Finally, the g-method is used to conduct flutter analyses of both isotropic and laminated composite lifting surfaces. The obtained results perfectly match those from 1D and 2D finite elements and those from experimental analyses. It can be stated that refined beam models are compulsory to deal with the flutter analysis of wing models whereas classical and lower-order models (up to the second-order) are not able to detect those flutter conditions that are characterized by bending-torsion couplings.

Optimal Manufacturing of Composite Wing Ribs in Solar-Powered UAVs: A Study (태양광 무인기 복합재 윙 리브 최적 제작 연구)

  • Yang, Yongman;Kim, Myungjun;Kim, Jinsung;Lee, Sooyong
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.50-58
    • /
    • 2016
  • In our preceding study, we reported that the use of light, composite-material wings in long-endurance Solar-Powered UAVs is a critical factor. Ribs are critical components of wings, which prevent buckling and torsion of the wing skin. This study was undertaken to design and manufacture optimal composite ribs. The ribs were manufactured by applying laminated-layer patterns and shapes, considering the anisotropic properties of the composite material. Through the finite element analysis using the MSC Patran/Nastran, the maximum load and the displacement shape were identified. Based on the study results measured by structural tests, we present an optimal design of ribs.