• 제목/요약/키워드: Torque measurements

검색결과 162건 처리시간 0.028초

MOTOR CONTROL CENTER (MCC) BASED TECHNOLOGY STUDY FOR SAFETY-RELATED MOTOR OPERATED VALVES

  • Kang, Shin-Cheul;Park, Sung-Keun;Lee, Do-Hwan;Kim, Yang-Seok
    • Nuclear Engineering and Technology
    • /
    • 제38권2호
    • /
    • pp.155-162
    • /
    • 2006
  • It is necessary to monitor periodically the operability of safety-related motor-operated valves (MOVs) in nuclear power plants. However, acquiring diagnostic signals for MOVs is very difficult, and doing so requires an excessive amount of time, effort, and expenditure. This paper introduces an accurate and economical method to evaluate the performance of MOVs remotely. The technique to be utilized includes electrical measurements and signal processing to estimate the motor torque and the stem thrust, which have been cited as the two most effective parameters in diagnosing MOVs by the US Nuclear Regulatory Commission. The motor torque is calculated by using electrical signals, which can be measured in the motor control center (MCC). Some advantages of using the motor torque signature over other signatures are examined. The stem thrust is calculated considering the characteristics of the MOV and the estimated motor torque. The basic principle of estimating stem thrust is explained. The developed method is implemented in diagnostic equipment, namely, the Motor Operated Valve Intelligent Diagnostic System (MOVIDS), which is used to obtain the accuracy of and to validate the applicability of the developed method in nuclear power plants. Finally, the accuracy of the developed method is presented and some examples applied to field data are discussed.

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

Analysis and Application of a Hybrid Motor Structure Convenient to Modify the Magnet and Reluctance Torques on the Rotor

  • Beser, Esra Kandemir;Camur, Sabri;Arifoglu, Birol;Beser, Ersoy
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권3호
    • /
    • pp.349-357
    • /
    • 2012
  • This paper presents a hybrid motor prototype convenient to modify the magnet and reluctance torques. The rotor of the prototype consists of magnet and reluctance parts, so the generated torque includes both magnet and reluctance torques. A considerable feature of the motor is that the ratio of the magnet and reluctance parts can be modified on the rotor and the rotor hybridization ratio can be varied. Another important point is the mechanical angle between the parts changed by means of the suitable construction of the parts on the rotor shaft. Finite element (FE) analysis was carried out for the proposed motor and static torque measurements were realized. The FE results were compared with the experimental results. Average torque and maximum torque values were obtained and three dimensional 3-D graphs were formed by using the experimental data. It is possible to make different combinations by changing the parts and the angle between the parts due to the proposed motor. So the magnet and reluctance torques are modified and different combinations give different torque behavior.

Control Moment Gyroscope Torque Measurements Using a Kistler Table for Microsatellite Applications

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Yeong-Ho Shin;EunJi Lee;Sang-sub Park;Seokju Kang
    • 우주기술과 응용
    • /
    • 제4권1호
    • /
    • pp.12-26
    • /
    • 2024
  • Attitude control of a satellite is very important to ensure proper for mission performance. Satellites launched in the past had simple missions. However, recently, with the advancement of technology, the tasks to be performed have become more complex. One example relies on a new technology that allows satellites quickly alter their attitude while orbiting in space. Currently, one of the most widely used technologies for satellite attitude control is the reaction wheel. However, the amount of torque generated by reaction wheels is too low to facilitate quick maneuvers by the satellite. One way to overcome this is to implement posture control logic using a control moment gyroscope (CMG). Various types of CMGs have been applied to space systems, and CMGs are currently mounted on large-scale satellites. However, although technological advancements have continued, the market for CMGs applicable to, small satellites remains in its early stages. An ultra-small CMG was developed for use with small satellites weighing less than 200 kg. The ultra-small CMG measured its target performance outcomes using a precision torque-measuring device. The target performance of the CMG, at 800 mNm, was set through an analysis. The final torque of the CMG produced through the design after the analysis was 821mNm, meaning that a target tolerance level of 10% was achieved.

스프링형과 마찰형 기계식 임플란트 토크 렌치의 정확도에 관한 연구 (Accuracy of spring-style and friction-style mechanical implant torque wrench)

  • 차동희;오상천
    • 대한치과보철학회지
    • /
    • 제54권1호
    • /
    • pp.8-13
    • /
    • 2016
  • 목적: 본 연구의 목적은 두 가지(스프링형, 마찰형) 종류의 기계식 임플란트 토크 렌치를 2000회의 반복 사용과 100회의 멸균과정 후 그들의 정확도를 평가하는 것이다. 재료 및 방법: 각기 다른 5개 제조사의 스프링형, 마찰형 기계식 임플란트 토크 렌치가 각 15개씩, 총 30개 사용되었다. 디지털 토크 측정기(MGT-12, Mark-10 Corp, USA)를 이용하여 토크값을 실험 전 최초 측정 후 각 토크 렌치를 같은 조건(목표 토크 값까지 20회씩 반복 사용 후 멸균봉투에 포장하여 고압증기 멸균 시행)으로 100회 반복 시행하였다. 그 후 다시 토크값을 측정하여 비교하였다. 수집된 자료는 SPSS 통계분석 프로그램을 이용하여 분석하였고 오차율을 계산하였다. Mann-Whitney-U test를 이용하여 실험군 사이의 유의성을 분석하였다(P<.05). 결과: 스프링형 토크 렌치는 실험 전후로 토크값의 유의할만한 차이를 보이지 않았다(P>.05). 반면에 마찰형 토크 렌치는 실험 전후로 토크값의 유의할만한 차이를 나타내었으며(P<.05), 10% 이상의 오차율이 모두 마찰형 토크 렌치에서 나타났다. 결론: 본 연구의 제한된 실험 조건하에서 스프링형 토크 렌치가 마찰형 토크 렌치보다 사용횟수와 멸균과정을 고려했을 때 더욱 신뢰성이 높은 정확도를 보였다.

풍력발전기용 증속기 시험 장비의 토크 인가 장치 설계 (Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox)

  • 김정길;박영준;이근호;남용윤;오주영
    • 대한기계학회논문집A
    • /
    • 제39권5호
    • /
    • pp.507-515
    • /
    • 2015
  • 본 연구는 5.5MW 증속기용 기계식 동력순환 시험 장비의 핵심 기능을 하는 토크 인가 장치의 개발 및 검증에 관한 것으로, 설계 및 해석이 수행되었다. 또한, 시험 장비의 각 부품에 대하여 회전각을 측정하여 비틀림 강성을 확인하였다. 시험체를 제외한 시험 장비에 토크를 인가하여 각 부품의 회전각을 측정한 결과 시험 장비의 비틀림 강성은 정방향에서 231.13 kNm/rad으로 나타났으며, 증속기 1대의 비틀림 강성이 1,064,400 kNm/rad보다 큰 경우 정격 토크를 인가할 수 있다. 따라서 시험 장비의 회전각 한계로 인하여 시험체 증속기의 비틀림 강성에 따라 정격 토크 인가 여부가 결정된다.

통합모델과 최적 경로설계를 통한 산업용 로봇 동적 매개변수 규명 (Optimal Excitation Trajectories for the Dynamic Parameter Identification of Industrial Robots by Using Combined Model)

  • 박경조
    • 동력기계공학회지
    • /
    • 제12권2호
    • /
    • pp.55-61
    • /
    • 2008
  • This paper discusses the advantages of using Fourier-based periodic excitation and of combining internal and external models in dynamic robot parameter identification. Internal models relate the joint torques or forces with the motion of the robot; external models relate the reaction forces and torques on the bedplate with the motion data. This combined model allows to combine joint torque/force and reaction torque/force measurements in one parameter estimation scheme. This combined model estimation will yield more accurate parameter estimates, and consequently better predictions of actuator torque, which is shown by means of a simulated experiment on a CRS A465 industrial robot.

  • PDF

열간사상압연 통판안정성 개선을 위한 속도설정모델 개발 (Development of Rolling Speed Set-up Model for the Travelling Stability in Hot Strip Finishing Mill)

  • 문영훈;김영환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.47-56
    • /
    • 1999
  • New rolling speed prediction model has been developed for the precise presetting rolling speed of each finishing mill stand in the tandem hot strip mill. Those factors such as neutral point, work roll diameter, rolling torque, friction coefficient, bite angle and the thickness at each side of entry and deliver of the rolls were taken into account. To consider width effect on forward slip, calibration factors obtained from rolling torque has been added to new prediction model and refining method has also been developed to reduce the speed unbalance between adjacent stands. The application of the new model showed a good agreement in rolling speeds between the predictions and the actual measurements, and the standard deviation of prediction error has also been significantly reduced.

  • PDF

반응표면 기법을 이용한 생물반응조 표면포기기 최적설계 (Optimum Design of Surface Aerator Using Response Surface Method)

  • 윤정환
    • 한국가시화정보학회지
    • /
    • 제7권2호
    • /
    • pp.47-55
    • /
    • 2010
  • In this study, we optimized the shape of the surface aerator that will be installed in a biological reactor using the response surface method. Response surfaces of mass flow rate, impeller torque, mass flow rate per impeller torque are generated and used to track the optimum shape of the aerator. MOGA(Multi-Objective Genetic Algorithm)method is adopted to find the optimum results. By increasing the mass flow rate per impeller torque, increase of oxygen supply efficiency to a reactor is anticipated. To verify the usability of the surface aerator, PIV measurements on flow fields inside a scale-downed biological reactor model are carried out.

On Output Feedback Tracking Control of Robot Manipulators with Bounded Torque Input

  • Moreno-Valenzuela, Javier;Santibanez, Victor;Campa, Ricardo
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.76-85
    • /
    • 2008
  • Motivated by the fact that in many industrial robots the joint velocity is estimated from position measurements, the trajectory tracking of robot manipulators with output feedback is addressed in this paper. The fact that robot actuators have limited power is also taken into account. Let us notice that few solutions for the torque-bounded output feedback tracking control problem have been proposed. In this paper we contribute to this subject by presenting a theoretical reexamination of a known controller, by using the theory of singularly perturbed systems. Motivated by this analysis, a redesign of that controller is introduced. As another contribution, we present an experimental evaluation in a two degrees-of-freedom revolute-joint direct-drive robot, confirming the practical feasibility of the proposed approach.