• Title/Summary/Keyword: Torque fluctuation

Search Result 112, Processing Time 0.023 seconds

Reference Frame Approach for Torque Ripple Minimization of BLDCM over Wide Speed Range Including Cogging Torque (코깅 토크를 포함한 광역 속도 영역상의 BLDCM의 토크 리플 최소화를 위한 기준 프레임 접근기법)

  • Park, Han-Woong;Cho, Sung-Bae;Won, Tae-Hyun;Kwon, Soon-Jae;Ham, Byung-Woon;Kim, Cheul-U
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.33-36
    • /
    • 2001
  • Torque ripple control of brush less DC motor has been the main issue of the servo drive systems in which the speed fluctuation, vibration and acoustic noise should be minimized. Most methods for suppressing the torque ripples require Fourier series analysis and either the iterative or least mean square minimization. In this paper, the novel approach to achieve the ripple-tree torque control with maximum efficiency based on the d-q-0 reference frame is presented. The proposed method optimize the reference phase current waveforms including even the case of 3 phase unbalanced condition, and the motor winding currents are controlled to follow up the optimized current waveforms by delta modulation technique. As a result, the proposed approach provides a simple and clear way to obtain the optimal motor excitation currents. The validity and practical applications of the proposed control scheme are verified through the simulations and experimental results.

  • PDF

Vibration Transmissibility Analysis and Measurement of Automotive Clutch Spring Dampers (차량 클러치 스프링 댐퍼의 진동 전달률 해석 및 측정)

  • Jang, Jae-Duk;Kim, Gi-Woo;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.902-908
    • /
    • 2013
  • The input torque ripple induced by combustion engines is a significant source of NVH(noise, vibration and harshness) problem in automotive transmissions. Because this torque fluctuation is primarily transmitted to the input shaft of automotive powertrains(e.g., automatic transmissions) when the lock-up clutches are closed, a torsional damper with helical springs is generally inserted between engine and transmissions to isolate the input vibratory energy, which is essential for the passenger comfort. The torsional vibration isolator exhibits frequency ranges in which there is low vibration transmissibility. However, the isolation performance is currently evaluated through the static torsional spring characteristics. In this study, the transmissibility of torsional spring dampers, essential dynamic performance index for vibration isolator, is first experimentally evaluated.

A study on the design of the torsional vibration viscous damper for the crankshaft and developing of its performance simulation computer program (크랭크축 비틀림진동점성댐퍼의 설계와 댐퍼 성능시뮬레이션프로그램개발)

  • 이충기;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.77-96
    • /
    • 1989
  • In diesel engines, it is inevitable that the torsional vibration is produced by the fluctuation of engine torque. Therefore, if the occurence of torsional vibration is confirmed in the design stage or the torsional vibration is observed on the bed of test run, it is necessary to establish some preventive measures to avoid dangerous conditions. Major preventive measures are as follows : 1. Changing the natural frequency of shaft system. 2. Repressing the vibration amplitude by the damping energy. 3. Counterbalancing the exciting torque by the resistant torque. 4. Counterbalacing the harmonic component of exciting energy. In above methos, the damper is the last measure to be used for controlling the torsional vibration. In this thesis, the design of viscous damper that absorbs the exciting energy is investigated and a number of problems associated with the design of viscous damper are treated and a computer pregram for the process of damper design is developed. A viscous damper for a high speed diesel engine is designed and its effect is simulated by the author's computer program.

  • PDF

Very Low Spaed Drive of SRM using Micro-controller (마이크로 콘트롤러를 이용한 SRM의 초저속 속도제어)

  • Lee, Sang-Hun;Pyo, Sung-Young;Park, Sung-Jun;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1003-1005
    • /
    • 2000
  • The switched reluctance drive provides a good adjustable steed characteristics like a D.C series motor. However, because of the torque production mechanism, it also has some disadvantage such as higher torque ripple and fluctuation in speed. To reduce torque ripple and to control speed precisely at low condition current level technique is adopted. The SRM drive with current control of invariable frequency and phase swichting control has good speed regulation characteristics. Digital control system with an 80c196kc micro-controller is used to realize this drive system. Test results show that the control system has the goof ability to achive precise speed control at low speed.

  • PDF

An Experimental Study on Reduction of Gear Rattle Noise for a Mini-bus with Diesel Engine (디젤엔진을 탑재한 소형버스의 기어 래틀 소음 저감에 관한 실험적 연구)

  • Jung, Jong-An;Cho, Chan-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.13-21
    • /
    • 1995
  • On mini-bus with diesel engine, at idle rpm for taking measurement to reduce gear rattle noise, was tested by the three clutch disc samples by turns, then measured the fluctuation of revolution of engine & transmission and parallel vibration of differential gear & transmission. By analyzing the measured data, the gear rattle noise, the matching design and tuning technic of transmission are comprehended and established. Conclusions of this test are as follows ; (1) Fluctuation of revolution on transmission is greatly affected by torsion of clutch disc according to fluctuation of engine revolution transmit to transmission through clutch system. Especially, gear rattle noise can be reduced by minimaizing the fluctuation of the revolution of transmission using pre-damper type clutch disc. (2) The reason of gear rattle noise is higher in summer than winter and driving longer period than initial driving is due to affection by drag torque changing. So, it is necessary for manufacturer to choose proper oil to transmission. (3) It can be occurred jumping and crash noise by applying the pre-damper type clutch disc for reducing the gear rattle noise. So, it is necessary to do test with actual vehicle according to test procedure.

  • PDF

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

Optimizing the design factors of the head-fed type combine(I) -Estimation of the threshing drum torque curve- (자탈형 콤바인 탈곡부 설계요인(設計要因)의 적정화(適正化)를 위한 연구(I) -급동축(扱胴軸) 토오크 파형의 추정(推定)-)

  • Nam, S.I.;Chung, C.J.;Hosokawa, A.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.42-49
    • /
    • 1987
  • The threshing action of the head-fed type threshing unit occurs mainly by the impact between threshing tooth and grains. It may be therefore the most fundamental step to calculate the time and order of the occurrance of impact by the tooth for predicting the performance of threshing unit. The threshing teeth arrangement was defined by length and diameter of threshing dram, number of spiral arrays, number of threshing teeth by kind per one spiral array, number of windings of spiral array around the threshing drum, delay angle of impact line. The linear equations for locus of left and right margin of paddy bundle, spiral array, impact line on the development figure of the threshing drum were expressed by fastors of the threshing teeth arrangement. In the computer program, the teeth which inflict impact were searched successively along the impact line. Searching range and impact condition were defined by the relation between four linear equations. If the impacting tooth was found, time and the kind of threshing tooth was derived from the coordinate of the threshing tooth. At this time the unit torque curve was accumulated on the array of computer memory. At last the completed torque curve of threshing drum shaft was described on the computer screen. Remarkably the peack valae and fluctuation of torque curve was decreased by adopting the delay angle of impact line.

  • PDF

Unsteady Flow Characteristics of an Axial Flow Fan Installed in the Outdoor Unit of Air Conditioner (에어콘 실외기용 축류송풍기의 비정상 유동장 특성 연구)

  • Jang, Choon-Man
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.223-230
    • /
    • 2005
  • The unsteady nature of vortex structures has been investigated by a large eddy simulation (LES) in an axial flow fan with a shroud covering only the rear region of its rotor tip. The simulation shows that the tip vortex plays a major role in the structure and unsteady behavior of the vortical flow in the fan. The movements of the vortex structures induce high-pressure fluctuations on the rotor blade and in the blade passage. Frequency characteristics of the fluctuating pressure on the rotor blade are analyzed using wavelet transform. The dominant frequency of the real-time pressure selected at the high pressure fluctuation region corresponds well to that of the fluctuating rotor torque and the experimental result of fan noise. It is mainly generated due to the unsteady behavior of the vortical flow, such as the tip vortex and the leading edge separation vortex.

  • PDF

A Study on the Reduction of Differential Vibration of FR Passenger Car (후륜구동 승용차의 디퍼렌셜 진동저감에 관한 연구)

  • 최은오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.316-321
    • /
    • 1997
  • The purpose of this study is to reduce the vibration noise of differential gear by reducing torque fluctuation of drive pinion shaft which causes vibration noise of differential gear in rear wheel drive vehicles. For this we developed multi-degree of freedom analysis model in which mass moment of inertia and torsional spring combined, the validity of the simulation model was checked by the field test and we examined the influence of torsional vibration of driveline elements by performing forced vibration analysis of engine excitation torque. We studied the methods for reducing torsional vibration of driveline according to the design factor of propeller shaft and examined the effects reducing vibration differential gear by applying flexible coupling.

  • PDF

A Study on the Clutch Damper Design Technique (클러치 댐퍼 설계 기법 연구)

  • 안병민;장일도;최은오;홍동표;정태진
    • Journal of KSNVE
    • /
    • v.7 no.6
    • /
    • pp.1031-1037
    • /
    • 1997
  • The main torsional vibration source of the driveline is the fluctuation of the engine torque. The gear rattle is generated by an impact in the backlash due to this torsional vibration. Optimization of the clutch torsional characteristic is one of the effective methods to reduce the idle gear rattle. Many researches have been reported on this problem but only few of them give sufficient consideration to the detail clutch modeling and clutch design parameters (stiffness, hysteresis torque, preload, first stage length). This paper pays attention to the gear impact mechanism and clutch design parameters to reduce the idle gear rattle with computer simulation.

  • PDF