• 제목/요약/키워드: Torque Ratio

검색결과 666건 처리시간 0.038초

마그네트 기반 감속기의 민감도 해석 (Sensitivity Analysis of the Speed Reducer using Magnetic Force)

  • 정광석
    • 융복합기술연구소 논문집
    • /
    • 제4권2호
    • /
    • pp.11-15
    • /
    • 2014
  • Magnet gear transfers a high speed torque of the driving side to a low speed following side. Of course, the torque is amplified as much as a ratio between pole number of magnet gears constituting both sides through ferromagnet modulator. However, the parameters of the overall magnetic system influence the transmitting torque strongly. They include a pole number of permanent magnet, magnet thickness, reducing ratio, harmonic modulator thickness, and open ratio etc. In this paper, the influences of the parameters are analyzed using finite element method tool. By comparison, a desirable design specification is proposed, including a recommended modulator pattern.

단편형 동기 릴럭턴스 전동기의 토크 및 열률 개선을 위한 회전자 설계 (Rotor Design of a Segmented Type Synchronous Reluctance Motor to Improve Torque and Power Factor)

  • 장석명;박병임;이성호;이중호
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권6호
    • /
    • pp.263-272
    • /
    • 2001
  • The paper presents the design of a segmented type synchronous reluctance motor(SynRM) to increase its torque and power factor. The main feature of a segmented type synchronous reluctance motor is the flux barrier. Thus, the design process to find optimum value of various geometric parameters including flux barrier will be explained. Optimum value of each parameter is found where the d, q inductance difference and saliency ratio are maximized because these inductance characteristics are related to torque and power factor. Finite Element Analysis will be used to simulate motor characteristics. Analysis results of redesigned SynRM show higher saliency ratio over 10 and improved value of maximum power factor.

  • PDF

전부하 상태에서 소형 엔진의 성능 및 배기특성 (Performance and Emissions Characteristics of Small Engine at WOT Condition)

  • 박상규;김병국;오진우;최영하;김동선;윤석주
    • 한국분무공학회지
    • /
    • 제13권2호
    • /
    • pp.85-90
    • /
    • 2008
  • This paper presents the performance and emissions characteristics of a small spark-ignited gasoline engine. The engine used in this paper is a single cylinder, diaphragm carburetor, two-stroke, air-cooled 26cc SI engine for brush cutter. For the performance of the engine, RPM, torque, and fuel consumption were measured and HC, CO, and NOx measured for the emissions according to the change of the dynamometer load at wide open throttle (WOT) position. The results showed that the excess air ratio decreased and torque increased with increasing loads, the torque and brake specific fuel consumption were the optimum driving condition at the 7000 rpm, HC and CO emissions increased with increasing loads and with an decrease in excess air ratio over 7000 rpm.

  • PDF

와류실식 디젤기관의 배기배출물 저감을 위한 연소실의 압축비 및 분구면적비 개선 (Improving Compression and Throat Ratios of Combustion Chamber for Reduction of Exhaust Emissions for a Swirl Chamber Type Diesel Engine)

  • 이창규;허윤근;서신원
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.501-508
    • /
    • 2010
  • A swirl chamber type diesel engine attachable to 18 kW agricultural tractors was improved to reduce exhaust emissions. Compression ratio and throat area ratio of the combustion chamber were varied to determine optimum combustion conditions. Tests were composed of full load and 8-mode emission tests. Compression ratio was fixed as 21, but the swirl chamber volume was increased by 3.8%. Output power, torque, specific fuel consumption, exhaust gas temperature, and smoke level were not considerably different for compression ratios of 21.5 (reference condition) and 21 (test condition), while NOx, HC, CO and PM levels for the compression ratio of 21 were decreased by 11%, 46%, 28%, 11%, respectively, from those for the compression ratio of 21.5. The tests were also conducted with a compression ratio of 22 and 4.3% increased chamber volume. Output power, torque, exhaust gas temperature and smoke level were greater, while specific fuel consumption was less for the compression ratio of 22 than those for the compression ratio of 21.5. Increase of compression ratio decreased HC and CO levels by 24%, 39%, but increased NOx and PM levels by 24%, 39%. Based on these results, a compression ratio of 21 was selected as an optimum value. Then, full load tests with the selected compression ratio of 21 were carried out for different throat ratios of 1.0%, 1.1%, 1.2%. Output power and torque were greatest and smoke was lowest when throat area ratio was 1.1%, which satisfied the target values of specific fuel consumption (less than 272 g/$kW{\cdot}h$) and exhaust gas temperature (less than $550^{\circ}C$). Therefore, a throat area ratio of 1.1% was selected as an optimum value.

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • 제38권2호
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

CVT 시스템 효율을 고려한 변속 제어 (Ratio Control of CVT by Considering the CVT System Efficiency)

  • 류완식;김현수
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.157-163
    • /
    • 2006
  • A modified ratio control algorithm is proposed for the improvement of the fuel economy for a metal belt CVT. In the modified ratio control algorithm, the CVT ratio is controlled to operate the engine on the optimal operation region which provides the best efficiency from the view point of the overall efficiency of the engine-CVT system. In order to construct the modified ratio map, the CVT system loss model is used by assuming that the all the loss is attributed to the torque loss. It is found from the simulation results that the fuel economy by the modified ratio control algorithm is improved by 5.5 percents compared with the existing ratio control.

정상인과 편마비 환자의 주관절 등척성 운동시 우력양상과 심혈관계에 미치는 영향 (Torque Curves and Cardiovascular Response to Isometric Exercise at the Elbow Joint in Normal and Hemiplegic Subjects)

  • 신형수;황보각;임원식;김중선
    • The Journal of Korean Physical Therapy
    • /
    • 제13권3호
    • /
    • pp.537-549
    • /
    • 2001
  • The isometric torque of the elbow flexor and extensor muscles were measured for 6 seconds at a joint angle of 90$^{\circ}$ , in 10 normal subjects (control group) and 10 hemiplegic subjects(patient group), using the Cybex NORMTM System. The peak torque, the time to peak torque were measured for each exercise. In addition, heart rate and blood pressure were recorded simultaneously at rest and immediately following exercise completion at 1 and 3m mutes. Statistical analysis was performed using SPSS 8.0 for Windows software and mean and standard deviations were calculated. The results are as follows. 1) In the patient involved group. the isometric values for flexors and extensors were significantly lower than in the normal nondominant group(p<.05). 2) The extensor to flexor strength ratio in the isometric mode was 121.0% in the patient involved group compared with 78.7%in the normal nondominant group, a significant difference(p<.05). 3) The mean increment ratio was increased 19.0% for systolic blood pressure and 25.2% for disatolic blood pressure in the patient group. 4) The mean increment ratio was increased 36.0% heart rate in the patient group.

  • PDF

유체동압베어링으로 지지되는 HDD 의 장착각도에 따른 회전부의 특성해석 (Characteristic Analysis of Rotor System due to the Positioning Angles of HDD Supported by Fluid Dynamic Bearings)

  • 황충만;장건희;이지훈;이민호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.986-992
    • /
    • 2014
  • This research investigates experimentally and numerically the tilting angle, eccentricity ratio, flying height of axial direction, friction torque, and critical mass of the HDD disk-spindle system due to HDD positioning angle. The tilting angle and the eccentricity ratio are the maximum when the HDD positioning angle is $90^{\circ}$ respect to horizontal position because the external force in radial direction and the torque applied to the rotating part are the maximum when the HDD positioning angle is $90^{\circ}$. The flying height increases with the increase of the HDD positioning angle because the direction of gravity applied to the rotating part changes. The friction torque increases with the increase of the HDD positioning angle until it becomes $60^{\circ}$, and decreases with the increase of the HDD positioning angle after it becomes $60^{\circ}$. The stability is the maximum when the HDD positioning angle is $90^{\circ}$.

  • PDF

농업용 트랙터의 전후진 파워시프트 변속 특성 해석 (Analysis of Power Shuttle Characteristics of Agricultural Tractor)

  • 김대철;이호상;정병학;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제27권6호
    • /
    • pp.479-490
    • /
    • 2002
  • A dynamic model of a power shuttle transmission was developed and its validity was verified using the experimental data obtained from a transmission test bench. A 40㎾, 4WD tractor was also modeled using an application software EASY5 to investigate parameters and their effects on the power shifting performance. For a tractor model, the manual reverse gear was replaced by a power shuttle transmission. The tractor model also included an engine, main-gears for transmission, wheels, differentials and planet gears. Using the tractor model, the effects of the parameters such as modulating pressure and time, engine speed, tractor speed. tractor weight. reverse to forward speed ratio and torsional damper on the transient characteristics at starting and shuttle shifting were investigated by the computer simulation. The transient characteristics were represented by variations in clutch pressure, torque transmitted to input shaft and driving wheels, and power transmission capacity of the clutch. It was found that the modulating pressure and time affected most significantly the torque transmission and shifting time. The input torque, axle torque, power transmission capacity of the clutch and transmission time all increased with increase in engine speed, tractor speed. tractor weight and ratio of reverse to forward speeds. However, the axle torque decreased with tractor speed. Both the axle torque and power transmission capacity of the clutch also decreased with the ratio of reverse to forward speeds.

SRM의 토크리플 저감을 위한 개선된 논리적 비선형 토크분배기법 (Advanced Logical Non-Linear Torque Sharing Function for Torque Ripple Reduction of SRM)

  • 김태형;이동희;안진우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.887_888
    • /
    • 2009
  • In this paper, an advanced torque control scheme of Switched Reluctance Motor (SRM) using modified non-linear logical TSF (Torque Sharing Function) based on the DITC (direct instantaneous torque control) with PWM(Pulse Width Modulation). In the proposed control scheme, a simple calculation of PWM duty ratio, switching rules from DITC and non-linear torque sharing function can reduce the torque ripple with fixed switching frequency. The proposed control scheme is verified by the computer simulations and experimental results.

  • PDF