• 제목/요약/키워드: Torque Mode Control

검색결과 303건 처리시간 0.038초

A Sensorless PMDC Motor Speed Controller with a Logical Overcurrent Protection

  • Guerreiro, M.G.;Foito, D.;Cordeiro, A.
    • Journal of Power Electronics
    • /
    • 제13권3호
    • /
    • pp.381-389
    • /
    • 2013
  • A method to control the speed or the torque of a permanent-magnet direct current motor is presented. The rotor speed and the external torque estimation are simultaneously provided by appropriate observers. The sensorless control scheme is based on current measurement and switching states of power devices. The observers performances are dependent on the accurate machine parameters knowledge. Sliding mode control approach was adopted for drive control, providing the suitable switching states to the chopper power devices. Despite the predictable chattering, a convenient first order switching function was considered enough to define the sliding surface and to correspond with the desired control specifications and drive performance. The experimental implementation was supported on a single dsPIC and the controller includes a logic overcurrent protection.

병렬형 하이브리드 전기자동차 구동계의 Jerk 저감 제어 (Drive-train Jerk Reduction Control for Parallel Hybrid Electric Vehicles)

  • 박준영;심현성
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.17-24
    • /
    • 2011
  • TMED(Transmission Mounted Electric Device) parallel hybrid configuration can realize EV(Electric Vehicle) mode by disengaging the clutch between an engine and a transmission-mounted motor to improve efficiencies of low load driving and regenerative braking. In the EV mode, however, jerk can be induced since there are insufficient damping elements in the drive-train. Though the jerk gives demoralizing influence upon driving comport, adding a physical damper is not applicable due to constraints of the layout. This study suggests the jerk reduction control, composed of active damping method and torque profiling method, to suppress the jerk without hardware modification. The former method creates a virtual damper by generating absorbing torque in the opposite direction of the oscillation. The latter method reduces impulse on the mated gear teeth of the drive-train by limiting the gradient of traction torque when the direction of the torque is reversed. To validate the effectiveness of the suggested strategy, a series of vehicle tests are carried out and it is observed that the amplitude of the oscillation can be reduced by up to 83%.

슬라이딩모드와 압전필름 작동기를 이용한 단일링크 유연 머니퓰레이터의 강건위치제어 (Robust Position Control of a Single-Link Flexible Manipulator Using Sliding Mode and Piezofilm Actuator)

  • 최승복
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1371-1381
    • /
    • 1995
  • A novel hybrid control scheme to actively control the endpoint position of a very flexible single-link manipulator is proposed. The control scheme consists of a motor mounted at the beam hub and a piezofilm actuator bonded to the surface of the flexible link. The control torque of the motor to produce a desired motion is firstly determined by employing the sliding mode control theory on the equation of motion of the rigid link having the same mass as that of the proposed flexible link. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, undesirable oscillation is actively suppressed by applying a feedback control voltage to the piezofilm actuator. Consequently, the imposed desired position is accomplished. In order to demonstrate high control performances accrued from the proposed method, computer simulations are undertaken by treating both regulating and tracking control problems.

잠김 방지 기능을 가지는 비접촉식 와전류형 제동장치의 견실제어 (Robust Control of an Anti-Lock Eddy Current Type Brake System)

  • 이갑진;박기환
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.525-533
    • /
    • 1998
  • A conventional contact type brake system which uses a hydraulic system has mny Problems such as time delay response due to pressure build-up, brake pad wear due to contact movement, bulky size, and low braking performance in high speed region. As vehicle speed increases, a more powerful brake system is required to ensure vehicle safety and reliability. In this work, a contactless brake system of an eddy current type is proposed to overcome problems. Optimal torque control which minimizes a braking distance is investigated with a scaled-down model of an eddy current type brake. It is possible to realize optimal torque control when a maximum friction coefficient (or desired slip ratio) corresponding to road condition is maintained. Braking force analysis for a scaled-down model is done theoretically and experimentally compensated. To accomplish optimal torque control of an eddy current type brake system, a sliding mode control technique which is, one of the robust nonlinear control technique is developed. Robustness of the sliding mode controller is verified by investigating the braking performance when friction coefficient is varied. Simulation and experimental results will be presented to show that it has superior performance compared to the conventional method.

  • PDF

동일한 간극을 갖고 있는 ER 및 MR 클러치의 성능 비교 (Performance Comparison Between ER and MR Clutches with Same Gap Size)

  • 홍성룡;최승복
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1055-1064
    • /
    • 1999
  • In this wort ER(electro-rheological) clutch and MR(magneto-rheological) clutch are devised and their performance characteristics such as response time and controllability are compared. As a first step, field-dependent yield stresses of ER and MR fluids are distilled in shear mode. For reasonable comparison between two clutches, a nondimensional design model is established by choosing same design parameters of gap size and number. Following the manufacturing of two clutches, field-dependent torque level, response time to step input, mechanical Power generation to electric power consumption are experimentally measured and compared. In addition, in order to investigate torque controllability of the clutches a sliding mode controller is formulated and experimentally realized. Control bandwidths of two clutches are identified and tracking control responses for desired torque trajectories are presented.

Cadence Sensing 방식의 전기자전거를 위한 정밀 토크제어 컨트롤러 설계 (Design of Precise Torque Controller for Electric Bicycle with Cadence Sensing Drive System)

  • 이주연;김대순;이종하;송제호
    • 전자공학회논문지
    • /
    • 제54권6호
    • /
    • pp.134-139
    • /
    • 2017
  • 본 논문에서는 전기자전거의 정밀 토크제어를 위하여 새로운 토크제어 방식을 제안하고 구현한다. 트로틀 노이즈를 제거하기 위한 이동 평균 필터를 채택함으로써 256 단계의 세분화된 트로틀 단계로 전기자전거의 제어가 가능하다. 설계된 컨트롤러는 전기자전거에 장착 실험되어 기존의 Cadence 감지 컨트롤러 대비 개선된 선형 제어특성을 확인하였다.

바이패드 로봇의 안정적인 거동을 위한 제어 (Biped Robot Control for Stable Walking)

  • 김경대;박종형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.311-314
    • /
    • 1995
  • Biped locomotion can be simply modeled as a linear inverted pendulum mode. This model considers only the CG (center of gravity) of the entire system. But in real biped robot systems, the free-leg motion dynamics is not negligible. So if its dynamics is not considered in designing the reference CG motion, it is badly influence to the ZMP(zero moment point) position of the biped robot walking in the sagittal plane. Therefore, we modeled the biped locomotion similar to the linear inverted pendulum mode but considered the predetermined free-leg dynamics. To verify that the proposed biped locomotion is more stable than the linear inverted pendulum mode, we constructed a biped robot simulator and designed a serco controller to track both the reference motion of the free leg and the reference motion of CG of the biped robot using the computed torque control low. And through simulations, we verified that the proposed walking is better in stability than the one based on the linear inverted pendulum mode.

  • PDF

Sliding Mode Attitude Control for Momentum-Biased Spacecraft

  • Bang, Hyo-Choong;Loh, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.13-23
    • /
    • 2002
  • In this paper, we present a sliding mode control strategy for the re-orientation maneuver of rigid spacecraft containing rotating wheels. The wheels are considered as internal devices, and external inputs are employed for generation of control commands. The formulation is developed for a general case while particular example is applied to pitch bias momentum spacecraft with a single momentum wheel. The resultant control commands are used to take the gyroscopic effects into account which are caused by the rotating wheels. The controller designed demonstrates that the nutational motion of the pitch bias momentum spacecraft is effectively controlled. It is also assumed that the external control torque device is of on-off nature, and pulse width modulation technique is applied to construct proper control torque history.

직접 토오크 제어를 이용한 센스리스 유도전동기의 속도제어 (A Speed Control of Sensorless Induction Motor using Direct Torque Control)

  • 박건우;고태언;하홍곤
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2001년도 학술대회논문집
    • /
    • pp.181-185
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). The drive is based on Mode1 Reference Adaptive System (MRAS) using state observer as a reference model fat flux estimation. The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAS) with rotor flux linkages for the speed turning aignal at low speed range, two hysteresis controllers. The Proposed system is verified through simulation.

  • PDF

광범위한 속도영역의 운전을 위한 IPMSM의 순시 토크제어 (Instantaneous Torque Control of IPMSM for Drive of Wide Speed Range)

  • 이정철;이홍균;정택기;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.183-186
    • /
    • 2002
  • The paper is proposed intantaneous torque control of IPMSM for drive of wide speed range. The control scheme is based on the mathematical model of the motor and is applicable to the constant torque and field weakening operations The scheme allows the motor to be driven with maximum torque per ampere (MTPA) characteristic below base speed and it maintains the maximum voltage limit of the motor wide field weakening and the motor current limit under all conditions of operation accurately. For each control mode. a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to PMSM drive system for drive of wide speed range, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

  • PDF