• 제목/요약/키워드: Torque Estimation Method

검색결과 189건 처리시간 0.027초

에너지 변환법에 의한 스위치드 릴럭턴스 모터의 토오크 추정 (Torque Estimation of Switched Reluctance Motor using Energy Conversion Method)

  • 김윤현;김솔;최재학;이주
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권8호
    • /
    • pp.374-383
    • /
    • 2001
  • This paper presents the torque estimation scheme by Energy Conversion Method (ECM) that can be applied to the torque control of switched reluctance motor. There are two types of torque estimation method by ECM. One is the method using mechanical output energy and another is that using co-energy. When the torque is estimated by ECM, the estimated flux linkage can be obtained by voltage equation and Luenberger observer. By comparing the torque estimated by ECM with that be FEM, we verify the feasibility of the proposed torque estimation by ECM.

  • PDF

실린더 압력센서를 사용한 가솔린 엔진의 도시토크와 부하토크의 추정 (Indicated and Load Torque Estimation of SI-Engine using Cylinder Pressure Sensor)

  • 백종탁;박승범;선우명호
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.1-6
    • /
    • 2003
  • The torque is an important measure that represents the performance of a particular engine. Furthermore the information of engine torque can be used as a primary feedback parameter in modem engine management system. In this paper, a methodology is proposed for torque estimation of SI-engine. Since the proposed method uses cylinder pressure sensor, the torque can be estimated in a simple manner. The indicated torque is estimated from the peak pressure and its location, and the load torque is observed by the state observer based on the estimated indicated torque. The proposed method is accurate and robust against the variations that affect the torque production such as spark timing, mass air flow and others. This torque estimation method may be an alternative solution to the use of engine torque maps in a modem torque-based engine management system.

수정된 RLS 기반으로 관절 토크 센서를 이용한 로봇에 가해진 외부 힘 예측 및 펙인홀 작업 구현 (External Force Estimation by Modifying RLS using Joint Torque Sensor for Peg-in-Hole Assembly Operation)

  • 정유석;이철수
    • 로봇학회논문지
    • /
    • 제13권1호
    • /
    • pp.55-62
    • /
    • 2018
  • In this paper, a method for estimation of external force on an end-effector using joint torque sensor is proposed. The method is based on portion of measure torque caused by external force. Due to noise in the torque measurement data from the torque sensor, a recursive least-square estimation algorithm is used to ensure a smoother estimation of the external force data. However it is inevitable to create a delay for the sensor to detect the external force. In order to reduce the delay, modified recursive least-square is proposed. The performance of the proposed estimation method is evaluated in an experiment on a developed six-degree-of-freedom robot. By using NI DAQ device and Labview, the robot control, data acquisition and The experimental results output are processed in real time. By using proposed modified RLS, the delay to estimate the external force with the RLS is reduced by 54.9%. As an experimental result, the difference of the actual external force and the estimated external force is 4.11% with an included angle of $5.04^{\circ}$ while in dynamic state. This result shows that this method allows joint torque sensors to be used instead of commonly used external sensory system such as F/T sensors.

전류측정 데이터를 이용한 브러쉬 없는 직류전동기의 구동토크 예측 (A Driving Torque Prediction of Brushless DC Motor by Using the Measured Current Data)

  • 변영철;전혁수
    • 한국군사과학기술학회지
    • /
    • 제2권2호
    • /
    • pp.242-250
    • /
    • 1999
  • This paper presents an estimation scheme of the external torque applied on the motor by using measured motor input current when the IPM(Interior Permanent Magnet) rotor type BLDC motor operates with constant speed. In general, the BLDC motor is controlled by vector control method. If it could be operated at over critical speed, the control scheme must be modified to flux-weakening control method. The external torque applied on the motor using flux-weakening control method could not be calculated by conventional torque equation because the demagnetizing current Id exists in the motor input current. In this paper, the commonly used flux-weakening control method is studied and the modified torque estimation scheme is suggested. The estimation scheme has been verified by the simulations and experimental results.

  • PDF

주축 모터 동력을 이용한 절삭력 예측 (Cutting Force Estimation Using Spindle Motor Power)

  • 최영준;김기대;주종남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.1088-1094
    • /
    • 1997
  • An indirect cutting torque and cutting force estimation method is presented. This method uses a time-domain model between the spindle motor power, which calculated form measured spindle motor current and voltage. Spindle motor power is linear with cutting torque in this model. The cutting force is proportional to the cutting torque. Using trial cut, parameters are determined. Static sensitivity is suitable for various cutting conditions. The presented method is verified under several cutting tests on the CNC horizontal machining center.

  • PDF

고정자 자속 추정과 PLL을 이용한 동기모터의 센서리스 속도 제어 (Sensorless Speed Control of PMSM using Stator Flux Estimation and PLL)

  • 김민호;양오
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.35-40
    • /
    • 2015
  • This paper presents the sensorless position control of the Permanent Magnet Synchronous Motor (PMSM) using stator flux estimation and Phase Lock Loop (PLL). The field current and the torque current are required in order to perform the vector control of the PMSM. At this time, it is necessary for the torque to know the exact position of the magnetic flux generated by the permanent magnet, because the torque must be applied torque current in the direction orthogonal to the permanent magnet. In general the speed of the PMSM is controlled by using a magnetic position sensor. However, this paper, we estimates the stator flux by using the PLL method without the magnetic position sensor. This method is simple and easy, in addition it has the advantage of a stabile estimation of the rotor. Finally the proposed algorithm was confirmed by experimental results and showed the good performance.

주축용 유도전동기의 매개변수 추정과 토크 모니터링 시스템 (Parameters Estimation and Torque Monitoring for the Induction Spindle Motor)

  • 권원태;김규식
    • 대한기계학회논문집A
    • /
    • 제28권3호
    • /
    • pp.238-244
    • /
    • 2004
  • To monitor the torque of an induction motor using current, the accurate identification of the motor parameters is very important. In this study, the motor parameters such as rotor resistance, stator and rotor leakage inductance, mutual inductance are estimated for torque monitoring and indirect vector control. Estimated parameters are used to monitor the torque of vector controlled induction motor without any speed measuring sensor. Stator current is measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. From the experiments, the proposed method shows a good estimation of the motor parameters and torque under the normal rotational speed.

The Practical Method and Experimental Verification of Temperature Estimation in the Permanent Magnet of Electric Machine

  • Kang, Kyongho;Yu, Sukjin;Lee, Geunho;Lee, Byeong-Hwa
    • Journal of Magnetics
    • /
    • 제20권4호
    • /
    • pp.421-426
    • /
    • 2015
  • This paper presents a practical method for estimation of average temperature in the permanent magnet (PM) of electric machine by using finite element analysis (FEA) and dynamo load experiment. First of all, the temperature effect of PM to the torque has been employed by FEA in order to evaluate the Temperature-Torque characteristic curve. The 1st order polynomial equation which is torque attenuation coefficient is derived by the FEA result of the Temperature-Torque curve. Next, torque saturation test with constant current condition is performed by dynamo load experiment. Then, the temperature trend can be estimated by adding the initial starting temperature using the torque attenuation coefficient and torque saturation curve. Lastly, estimated temperature is validated by infrared thermometer which measures temperature of PM surface. The comparison between the estimated result and experimental result gives a good agreement within a deviation of maximum $8^{\circ}C$.

접촉력 추정 정확도 향상을 위한 보행로봇의 마찰 토크 추정 (Estimation of Friction-torque to Improve Accuracy of Estimated Contact-force for a Walking Robot)

  • 이종화;강한구;이지홍;전봉환
    • 한국해양공학회지
    • /
    • 제29권5호
    • /
    • pp.398-403
    • /
    • 2015
  • This paper introduces a method to estimate the contact-force of the leg of a walking robot and proposes a solution to a shortcoming of the previous study. This shortcoming was the deteriorating performance when estimating the contact-force whenever the rotation of each joint was reversed. It occurred because the friction-torque of each joint was not considered. In order to solve this problem, a friction-torque model for a robot leg was developed based on repetitive experimentation and used to improve the contact-force estimation performance. We verified the performance of the proposed method experimentally.

EMG-Based Muscle Torque Estimation for FES Control System Design

  • Hyun, Bo-Ra;Song, Tong-Jin;Hwang, Sun-Hee;Khang, Gon;Eom, Gwang-Moon;Lee, Moon-Suk;Lee, Bum-Suk
    • 대한의용생체공학회:의공학회지
    • /
    • 제28권1호
    • /
    • pp.29-35
    • /
    • 2007
  • This study was designed to investigate the feasibility to utilize the electromyogram (EMG) for estimating the muscle torque. The muscle torque estimation plays an important role in functional electrical stimulation because electrical stimulation causes muscles to fatigue much faster than voluntary contraction, and the stimulation intensity should then be modified to keep the muscle torque within the desired range. We employed the neural network method which was trained using the major EMG parameters and the corresponding knee extensor torque measured and extracted during isometric contractions. The experimental results suggested that (1) our neural network algorithm and protocol was feasible to be adopted in a real-time feedback control of the stimulation intensity, (2) the training data needed to cover the entire range of the measured value, (3) different amplitudes and frequencies made little difference to the estimation quality, and (4) a single input to the neural network led to a better estimation rather than a combination of two or three. Since this study was done under a limited contraction condition, the results need more experiments under many different contraction conditions, such as during walking, for justification.