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Abstract

This study was designed to investigate the feasibility to utilize the electromyogram (EMQG) for estimating the muscle torque. The muscle
torque estimation plays an important role in functional electrical stimulation because electrical stimulation causes muscles to fatigue much
faster than voluntary contraction, and the stimulation intensity should then be modified to keep the muscle torque within the desired range.
We employed the neural network method which was trained using the major EMG parameters and the corresponding knee extensor torque
measured and extracted during isometric contractions. The experimental results suggested that (1) our neural network algorithm and
protocol was feasible to be adopted in a real-time feedback control of the stimulation intensity, (2) the training data needed to cover the
entire range of the measured value, (3) different amplitudes and frequencies made little difference to the estimation quality, and (4) a
single input to the neural network led to a better estimation rather than a combination of two or three. Since this study was done under a
limited contraction condition, the results need more experiments under many different contraction conditions, such as during walking, for

Jjustification.
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| . INTRODUCTION

unctional Electrical Stimulation (FES) has been used as
a useful means to cause contraction of paralyzed muscles
for functional mobility such as walking, grasping and so forth.
However, many problems should be solved before FES can be
easily applied to daily lives of the plegic patients. There is no
doubt that one of the major problems is the fact that electrical
stimulation causes muscles to fatigue much faster than voluntary
contraction. Consequently, in order to prolong and/or stabilize
FES-induced mobility, muscle fatigue, i.e. the muscle force
(or torque), needs to be monitored in real time to adjust the
stimulation intensity.
We believe that the electromyogram (EMG) can be utilized
to estimate muscle torque according to many reports [1, 2]
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stating that the muscle force may be somehow correlated with
EMG. The major reason for using EMG to estimate the muscle
torque is that there are few sensors available to measure
muscle force directly and that, if any, they cannot be used for
FES-induced movements such as walking. Erfanian et al. [1]
developed a torque predictor for an electrically stimulated
muscle in the isometric contraction. Each of the evoked EMG
(EEMG) and celectrical stimulation signal was used as the
input to the predictive model for muscle torque estimates.
They could obtain more accurate prediction of stimulated
muscle torque with EEMG-to-torque models than with
stimulation-to-torque models. Moreover, Tepavac et al. [2]
suggested EMG parameters - root mean squared (RMS) value,
integrated rectified EMG (IEMG), mean frequency and median
frequency (MDF) - should be correlated with the muscle torque
for FES-induced fatigue. However, their work was limited to
finding the onset of muscle fatigue. This study was designed to
adjust the stimulation intensities applied to paralyzed muscles
by estimating the muscle torque during sustained contractions.

The neural network method was applied to the major EMG
parameters for muscle torque estimation [3-5]. The neural
network method has been already adopted in some studies
since the EMG-torque relationship showed nonlinearity and
nonstationarity as well. Kent et al. [3] used the neural network
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Fig. 1. Knee extensor torque measurement and electrode positions.

to find out the EMG-torque relationship in the ankle joint
under isometric contraction. They measured EMG from six
different muscle sites and trained the network. The prediction
of the muscle torque was successful and the study showed the
feasibility of the neural network. Winslow et al. [4] suggested
the feasibility of the neural network using surface EMG to
maintain muscle force and the joint angle to compensate for
muscle fatigue during FES. Liu et al. [5] adopted the neural
network method to predict and validate dynamic muscle force
across subjects based on the measured EMG signals, reporting
that the dynamic force predictions were excellent at some
speeds with a little, but specific training input rather than a
great deal of non-specific training input. However, we assumed
in this study that the neural network is different from person to
person, implying that each network should be trained using
his/her own EMG/torque data and that the neural network
should not be applied to anyone else.

The ultimate goal of this study is to keep the muscle torque
within the desired range utilizing the mixed EMG, i.e. the
EMG resulting from voluntary contraction and electrical
stimulation simultaneously, measured from partially paralyzed
muscles. The examples include incomplete spinal cord injury
(SCI), stroke, etc. This paper describes how to estimate the
muscle torque from the voluntary EMG (VEMG) and EEMG
separately, assuming that the mixed EMG can be dissociated
into two components (VEMG and EEMG).

II. METHODS

A. Subjects

Three male incomplete SCI patients participated in the
experiment at the National Rehabilitation Hospital, Seoul,
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Korea. Their injury level was ASIA D, which means that they
could walk with the aid of some orthotic devices. Assuming
that the injury characteristics and the muscle contractile
characteristics are not bilaterally symmetric, we collected the
EMG/torque data separately from each leg. The left leg of one
patient, however, was excluded because it showed a serious
atrophy so that voluntary contraction was almost impossible.
All of the patients were given detailed explanation about the
experiment, and all the experiments were performed based on
their written consent.

B. Measurements

EMG and the knee extensor torque were measured using the
chair developed in our laboratory. As shown in Fig. 1, the
stimulation electrodes were surface rectangular electrodes
(5x9cm, Axelgaard Manufacturing Co., USA) positioned at
the motor point of the quadriceps which was manually found
at the beginning of each experiment. EMG was recorded, both
for the VEMG and the EEMG, through surface Ag/AgCl dual
electrodes (2cm in diameter, Noraxon, Arizona, USA). The
EMG electrodes were placed on the rectus femoris 2cm distal
to the stimulating electrode. An Ag/AgCl electrode (4x4cm,
ALCARE Co., Tokyo, Japan) was used as the reference
electrode placed near the patellar. The knee extensor torque
was computed by multiplying the moment arm to the force
measured using a load cell (SBL-100L, CAS Co., Seoul,
Korea). The upper extremities of the subjects were kept at the
upright position and the knee angle was fixed at 90 to avoid
the gravitational effect.

The pulse waveform and three stimulus parameters (pulse
width, pulse amplitude and frequency) were programmed in
the LabVIEW (National Instrument Co., Austin, Texas, USA).
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The frequency and the pulse width were fixed at 20Hz and
500s, respectively, in this study, and we employed the
unbalanced biphasic waveform which generally produced
more force and less fatigue than the other three typical
waveforms [6]. The stimulation intensity was controlled by
adjusting the pulse amplitude, and assumed to be 1 at or higher
than the maximum amplitude and 0 at or lower than the
threshold level of the amplitude. Three different stimulation
intensity patterns were selected, as shown in Fig. 2, to obtain
the EMG/torque data necessary for training and validating the
neural network. All of them were sinusoidal with different
amplitudes and periods. The LabVIEW transmitted the stim-
ulation intensity patterns to the stimulator, which generated
the corresponding pulse train. For the VEMG/torque, three
different activation intensity paiterns similar to Fig. 2 were
selected. First, each patient was told to maximally activate the
knee extensors, which was regarded as the peak intensity 1.
The patients were asked and trained to change the activation
level according to those shown in Fig. 2. One stimulation/
activation intensity pattern per day was applied to each subject.
The patient took a rest for at least 2-3 min to avoid any effect
from the previous stimulation(or voluntary activation).

The EMG and the knee extensor torque were measured
simultaneously using a 12-bit ADC DAQ device (NI 6070E,
National Instruments Co., Austin, Texas, USA) with the sam-
pling rate of 4,000Hz. The on-off blanking signals were applied
to EMG in order to erase the large-magnitude stimulating
current. The EMG signals were filtered and amplified in the
LabVIEW. The Butterworth filter was employed with the
bandwidth of 24-400Hz. The EMG parameters obtained from
the filtered signal was smoothed because of its rapid fluctuation.

C. Neural Networks

As inputs of the neural network to predict the muscle
torque, EMG parameters can be used instead of EMG itself.
Hwang et al. [7] selected three EMG parameters that could be
used for representing the muscle torque. They were RMS, PTP
and median frequency. They reported that RMS alone could
be employed for real-time estimation of the muscle torque.
We used RMS and PTP for electrical stimulation, while RMS
and IEMG for voluntary contraction. Hwang et al. [7] also
suggested the radial basis function network (RBF) algorithm
to monitor muscle fatigue during electrical stimulation. They
compared the estimation error resulting from three nonlinear
algorithms, RBF algorithm, error back-propagation (Levenberg-
Marquardt algorithm) and error back-propagation (Scaled
Conjugate Gradient algorithm). Since the RBF algorithm showed
the least error, we employed the RBF algorithm to estimate
muscle torque from EEMG and VEMG.

We applied three different analysis protocols for torque
estimation. First, we investigated how the number of training
data affected the quality of the network output. Since three
different EMG-torque data sets were obtained from the three
different stimulation intensity patterns described earlier, the
number of training data set could be one, two, or three.
Second, our interest lied in effects of the amplitude and the
frequency of the training data on the estimation quality. We
therefore applied the larger-amplitude and/or the larger-
frequency training data with the other data for validation and
vice versa. Third, we employed different input parameters for
the neural network. In this study, RMS, PTP and the combination
of RMS and PTP were selected for stimulation-induced
contraction, while RMS, IEMG and the combination of RMS

Fig. 2. Three stimulation/activation intensity patterns: the peak intensity and the period were (a) 1 and 8 seconds, (b) 0.8 and 8 seconds, and (c) 0.8 and 4 seconds,

respectively.
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and IEMG for voluntary contraction. RMS, PTP, and IEMG
were defined and calculated as:

Ly v*(n)

RMS =

2|

n=1

PTP = ‘vmax - rUminl
N
IEMG = d)lv(n)l
n=1
(v(n) : n-th EMG value, N : number of data, d:sampling interval)

Evaluation of the torque prediction from EMG was per-
formed by comparing the RMS error (%) and the correlation
coefficient between the target torque and the estimated torque.
The RMS error was defined and computed as:

RMS error (%) = \/%i(&)t(_%ﬂxm@

Here t is the target torque, y is the estimated torque, and N is
the number of data. The correlation coefficient was also com-
puted since it showed similarity of the two graphs, whereas the
RMS error represented only the difference between the two
data sets. Their values ranged from -1 to 1 and two shapes
were regarded similar if the correlation coefficient value was
higher than 0.95.

Ilf. RESULTS AND DISCUSSION

The muscle torque estimation was accurate as shown in Fig.
3, and the involved computation time was negligibly short.
We therefore believe that the proposed method can be adopted
for a real-time feedback control in FES. In some cases,
however, the RMS values exceeded the normal range, which
was presumably due to a change in the skin impedance, so that
unallowable errors were obtained between the estimated

torque and the target value. Effort was made to keep the skin
impedance within a given range by caring the skin before
every experiment.

Liu et al. [5] used the neural network to predict the muscle
torque with EMG (with and without considering the ankle
angle and the angular velocity) at four different speeds. They
trained the neural network with EMG/torque data at three of
the four speeds, so that the torque prediction was performed
using the data obtained at the fourth speed. In their experiment,
the torque predictions with EMG plus kinematics showed
lower errors and higher correlation coefficients than with
EMG without kinematics. This result implied that the additional
information to EMG could play an important role in the torque
predictions. Unallowable errors caused by skin impedance
changes in this study can be reduced if the additional information
such as the stimulation intensity is used as another input to the
neural network.

In the RBF algorithm, the choice of the centers and the
variances of the nonlinear function is very important for the
estimation quality [8]. Especially, if the variance is too small,
their selectivity is good but the resulting data is too noisy. On
the other hand, the estimated quality can be deteriorated if the
variance is too large. Therefore, we should consider modifying
the RBF algorithm to find the proper centers and variances,
which is one of the continuing subjects in our laboratory.
Although the RBF algorithm was employed in this study as the
learning was very fast and accurate, other algorithms can be
also used for muscle torque estimation. One example can be
the error back-propagation (EBP) algorithm which has been
also widely used in many researches {5,9,10}. The EBP
algorithm has an advantage over the RBF algorithm in that the
estimation error is fed back to the training unit of the neural
network, implying that the training is performed based on the
error at each time instant. Another important aspect related to
the neural network is to find the optimal number of the hidden .
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Fig. 3. Torque estimation based on the RMS values of VEMG: the RMS error and the correlation coefficient were 12.1% and 0.9890, respectively.
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Fig. 4. Torque estimation with (a) one training set (RMS error: 17.2%, correlation coefficient: 0.9823), (b) two training sets (RMS error: 15.9%, correlation coefficient:

0.9825), and (c) three training sets (RMS error: 16.1%, correlation coefficient: 0.9821).

layers [8]. This should be another problem solved before the
neural network can be easily used for the muscle torque
prediction not only in the laboratory but in the users' daily life.
It should be emphasized, however, that one needs to modify
the selected neural network algorithm according to the intrinsic
characteristics of the EMG/torque data.

Increasing the number of the training data did not help
enhance the accuracy of the estimation. We found no differences
when we changed the number of the training data sets as
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shown in Fig 4.

The experimental results suggested that the neural network
could lead to a better estimation when the training data
covered the entire range of the VEMG and/or EEMG values
than when they did not. Fig. 5 shows one example where (a)
and (c) were obtained with the training data covering the
whole amplitude range as in Fig. 1(a), and their estimation
quality was better than (b) and (d) based on the training data
set covering 80% of the whole amplitude range as in Fig. 1(b).
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Fig. 5. Estimation of the stimulation-induced torque ((a) and (b)) and volitional torque {(c) and (d)): in (a) and (c) the EMG value range was larger in the training data
than in the validation data, (b) and (d) being the opposite case. The RMS errors and the correlation coefficients were (a) 14.2%, 0.9791, (b) 17.8%, 0.9639,

(c) 14.7%, 0.9872, and (d) 18.0%, 0.9620, respectively.
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Fig. 6. Torque estimation at different frequencies: (a) and (b) were obtained from stimulation-induced contractions, and (c) and (d) were from voluntary contractions.
The RMS errors and the correlation coefficients were (a) 22.6%, 0.9721, (b) 26.4%, 0.9719, (c) 18.5%, 0.9715, and {d) 16.8%, 0.9856, respectively.
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Fig. 7. Torque estimation with different input parameters: RMS was input to the neural network in (a) and (c), RMS+PTP in (b), and RMS+EMG in (d). Note that
(a) and (b) were from simulation-induced contractions, and (c} and (d) from voluntary contractions. The RMS errors and the correlation coefficients were (a)

11.1%, 0.8976, (b} 33.3%, 0.8046, (c) 15.2%, 0.9881, and (d) 22.1%, 0.9884, respectively.
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Using different frequencies of the training data made no
difference to the estimation quality. In Fig. 6, (a) and (c) show
the estimation results when we used low-frequency training
data (based on Fig. 2(b)) and high-frequency validation data
(based in Fig. 2(c)), and (b) and (d) in the opposite case. All
the correlation coefficients in Fig. 6 were higher than 0.96 and
all the RMS errors were approximately 20%. It can be noted
that the RMS error tended to increase near the peaks of the
torque.

As far as the number of the inputs to the neural network is
concerned, one parameter was preferred over a combination
of two parameters. In Fig. 7, the torque estimation based on
the RMS values was better than the torque estimation based
on a combination of the RMS and PTP values in the
stimulation- induced contraction. Also, one input (RMS) to
the network resulted in a better or as good estimation than the
RMSHEMG input in the voluntary contraction. Though it is
generally known that the neural network performance is
affected by the number of the neurons, we found little
difference in the esti- mation quality when the number of the
neurons was varied. Also, this result was desirable in that the
data processing time should be as short as possible for a
real-time control of the muscle torque.

IV. CONCLUSION

The results suggested that we could adopt the neural network
method and the experimental protocol described in this paper
to estimate the muscle torque in real time based on the EMG
parameters such as the RMS, PTP and IEMG values. However,
the current results need more experiments in different
conditions, e.g. during walking, for justification, which is one
of our continuing studies.
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