• Title/Summary/Keyword: Torque Estimation

Search Result 388, Processing Time 0.025 seconds

A Sensorless PMDC Motor Speed Controller with a Logical Overcurrent Protection

  • Guerreiro, M.G.;Foito, D.;Cordeiro, A.
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.381-389
    • /
    • 2013
  • A method to control the speed or the torque of a permanent-magnet direct current motor is presented. The rotor speed and the external torque estimation are simultaneously provided by appropriate observers. The sensorless control scheme is based on current measurement and switching states of power devices. The observers performances are dependent on the accurate machine parameters knowledge. Sliding mode control approach was adopted for drive control, providing the suitable switching states to the chopper power devices. Despite the predictable chattering, a convenient first order switching function was considered enough to define the sliding surface and to correspond with the desired control specifications and drive performance. The experimental implementation was supported on a single dsPIC and the controller includes a logic overcurrent protection.

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Adaptive Compensation Technique of Parameter Variation for Quick Torque Response of an Induction Motor Drive (유도전동기의 속응 토크제어를 위한 파라미터 변동의 적응보상기법)

  • 손진근;정을기;김준환;전희종
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.206-213
    • /
    • 1998
  • In this paper, an adaptive compensation technique for parameter variation is proposed which can perform quick torque response in vector control of an induction motors. To solve the problem of control performance degradation due to parameter variation in an induction motor, a rotor resistance estimation is performed by the model reference adaptive control(MRAC). The algorithm of rotor resistance estimation is composed of the error relationship which is generated between a motor real instantaneous reactive power and an estimated instantaneous reactive power. The advantage of such a real reactive power reference model is independence of the motor parameter variation. The estimation rotor resistance values are applied to the direct vector control system with a flux observer. Finally, the simulations and experiment are presented to validate the rotor resistance estimation algorithm of induction motor.

  • PDF

A Neutral-Voltage-Compensated Sensorless Control of Brushless DC Motor

  • Won, Chang-Hee;Song, Joong-Ho;Ick Choy;Lim, Myo-Taeg
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.59-64
    • /
    • 2003
  • This paper presents a new rotor position estimation method for brushless DC motors. The estimation error of the rotor position clearly provokes the phase shift angle misaligned between the phase current and the back-EMF waveforms, which causes torque ripple in brushless DC motor drives. Such an estimation error can be reduced with the help of the proposed neutral-voltage-based estimation method, which is structured as a closed loop observer. A neutral voltage appearing during the normal mode of the inverter operation is found to be an observable and control table measure, which can be used for estimating an exact rotor position. This neutral voltage is obtained from the DC-link current, the switching logic, and the motor speed values. The proposed algorithm, which can be easily implemented by using a single DC-link current and the motor terminal voltage sensors, is verified by simulation and experiment results.

Sensorless Speed Control of Induction Motor Using Observation Technique (관측기관을 이용한 유도전동기의 센서리스 속도제어)

  • 이충환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.96-102
    • /
    • 1999
  • Sensorless speed estimation in induction motor systems is one of the most control engineers. Based on the estimated speed the vector control has been applied to the high precision torque control however most speed estimation methods use adaptive scheme so that it takes long time to estimate the speed. Thus the adaptive estimation scheme is not effective to the induction motor which requires short sampling time. In this paper a new linearized equation of induction motor system is proposed and a sensorless speed estimation algorithm based on observation techniques is developed. First the nonlinear induction motor equation is linearized at an equilibrium point. Second a proportional integral(PI) observer is applied to estimate the speed state in the induction motor system. Finally simulation results will assure the effectiveness of the new linearized equation and the sensorless estimation algorithm by using PI observer in the nonlinear induction motor system.

  • PDF

Simultaneous Estimation of Rotor Speed and Rotor Resistance of an Induction Motor Using Variable Rotor Flux

  • Lee Zhen-Guo;Jeong Seok-Kwon
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.282-288
    • /
    • 2005
  • In this paper, a new speed sensorless induction motor scheme which can estimate rotor speed and rotor resistance simultaneously is presented. The rotor flux with a low frequency sinusoidal waveform is used to conduct on-line simultaneous estimation of the rotor speed and rotor resistance. Hence the proposed sensorless control method is robust to rotor resistance variations. Also, the control scheme has no current minor loop to determine voltage references. It contributes to good control performance at low speeds. Some simulation results supported by experiments are given to show the effectiveness of this method.

Neural network based position estimation of mobile robot in slippery environment (Slip이 발생할 때 신경회로망을 이용한 이동로보트의 위치추정에 관한 연구)

  • 최동엽;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.133-138
    • /
    • 1993
  • This paper presents neural network based position estimation method in slippery environment as an approach to solve one of problems which are engaged in dead reckoning method. Position estimator is composed of slip detector and linear velocity estimator. Both of them are based on the fact that dynamic characteristic of mobile robot in slippery environment is different from the case without slip. To find out the dynamic relation among driving torque, angular acceleration of driving wheel and linear acceleration of mobile robot, accelerometer is used for measuring acceleration of mobile robot and neural network is used for dynamic system identifier in slippery environment.

  • PDF

A Study on the Equivalent Circuit and Parameter Estimation of I.M for Steady state. (정상상태시 유도전동기의 등가회로 및 정수산정에 관한 연구)

  • Baek, Soo-Hyun;Kim, Yong
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.80-82
    • /
    • 1988
  • This paper proposed a new equivalent circuit and parameter estimation for I.M, which is different from T type and L type equivalent circuits. By using this circuit, we can analyze the torque of I.M, such as seperately exited D.C Motor, further more, we think that this equivalent circuit is effective to the vector control system for I.M.

  • PDF

Speed Control of an Induction Motor using Acceleration Feedforward Compensation (가속도 전향보상을 이용한 유도전동기의 속도제어)

  • Kim, Sang-Hoon;Lee, Jae-Wang
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.175-182
    • /
    • 2000
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controller induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The experimental results confirm the validity of the proposed strategy.

  • PDF

Thrust Force Estimation using Flexible Neural Networks

  • Kim, Myeong-Hee;Shigeyasu Kawaji;Masaki Arao
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.1-47
    • /
    • 2001
  • The drilling process has a great importance for the production technology due to its widerspread use in the manufacturing industry. In order to enhance a maximum production rate and prevent the drill from the damage, it is important to monitor and control the drilling system. Thrust force and cutting torque are the main output variables in the design of drilling control systems. In this paper, an alternative estimation method of thrust force by using flexible neural networks is proposed. Flexible neural network uses the sigmoid activation function with adjustable parameter in order to enhance the approximation accuracy ...

  • PDF