• Title/Summary/Keyword: Torque Control Method

Search Result 1,199, Processing Time 0.036 seconds

A study on torque shaping method for slewing and vibration suppression of flexible structures (유연우주비행체의 선회 및 진동억제를 위한 Torque Shaping 기법에 관한 연구)

  • 문종윤;석진영;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1087-1090
    • /
    • 1996
  • The objective of this paper is to present a new input torque shaping method for slewing and vibration suppression of flexible structure based on Fourier series expansion. Vibration energy of the structure with shaped control input is investigated with respect to the shaping parameter of the reference torque, maneuver time and the number of trigonometric functions to be included in the series. Analytic expressions of the performance indices and their derivatives are derived in the modal coordinates. Numerical results show the effectiveness of the proposed approach to design the open-loop control law that modifies the shape of input torque for simultaneous slewing and vibration suppression.

  • PDF

Direct Instantaneous Torque Control of Hydraulic Oil Pump System (유압펌프시스템의 직접 순시 토오크 제어)

  • Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.150-151
    • /
    • 2007
  • In hydraulic oil pump system, pressure has a linear relationship with output torque of motor. Torque control of pump drive can easily output stable pressure, and it can retain required pressure at minimum speed to save power consumption. Switched reluctance motor(SRM) has many advantages such as low cost and low inertia. It can generate high torque at low speed. But inherent high torque ripple of SRM influences performance of pressure control in hydraulic oil system. This paper presents direct instantaneous torque control(DITC) of hydraulic oil pump system. DITC method can reduce inherent torque ripple of SRM, and output smoothing torque to load. So the proposed hydraulic oil pump system can support smooth pressure and fast dynamic power supply to the hydraulic pump system. At last the proposed hydraulic oil pump system is verified by computer simulation and experimental results.

  • PDF

A Commutation Torque Ripple Reduction for Brushless DC Motor Drives

  • Won, Chang-hee;Song, Joong-Ho;Ick Choy
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.174-182
    • /
    • 2002
  • This paper presents a comprehensive study on reducing commutation torque ripples generated in brushless DC motor drives with only a single do-link current sensor provided. In such drives, commutation torque ripple suppression techniques that are practically effective in low speed as well as high speed regions are scarcely found. The commutation compensation technique proposed here is based on a strategy that the current slopes of the incoming and the outgoing phases during the commutation interval can be equalized by a proper duty-ratio control. Being directly linked with deadbeat current control scheme, the proposed control method accomplishes suppression of the spikes and dips superimposed on the current and torque responses during the commutation intervals of the inverter. Effectiveness of the proposed control method is verified through simulations and experiments.

Maximum Torque Control of IPMSM Drive using Optimal Current (최적전류를 이용한 IPMSM 드라이브의 최대토크 제)

  • Baek, Jeong-Woo;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Mun, Ju-Hui;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.57-58
    • /
    • 2010
  • This paper proposes maximum torque control of IPMSM drive using optimal current. This control method is applicable over the entire speed range which considered the limits of the inverter's current and voltage rated value. For each control mode, a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using multi-MFC and ANN controller. Also, this paper proposes maximum control of IPMSM drive using approximation method. This method is decreased the burden of digital signal process(DSP) in calculation of optimal current. This paper proposes the analysis results to verify the effectiveness of the MFC and ANN controller. Also it verifies the validity of maximum torque control of IPMSM drive with optimal current.

  • PDF

Cutting Torque Control in Drilling Part 1 : Design of a Cutting Torque Controller (드릴 공정시 절삭 토크 제어 제 1 편 : 절삭 토크 제어기의 설계)

  • O, Yeong-Tak;Gwon, Won-Tae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.96-106
    • /
    • 2001
  • As the drilling depth increases, the cutting torque increases and fluctuates, which can lead to the machine tool vibration, severe tool wear, and catastrophic tool breakage. Hence, cutting torque control is very important to improve productivity in drilling. In this paper, a PID controller was designed to control the drilling torque. The plant including the feed drive system, cutting process and spindle drive system was modeled for controller design. The Ziegler-Nichols method was used to determine the controller gain and control action times and the root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols method and the root locus plot. The performance of the designed controller and the effect of controller gain tuning were verified from experiments.

  • PDF

Switching rules based on fuzzy energy regions for a switching control of underactuated robot systems

  • Ichida, Keisuke;Izumi, Kiyotaka;Watanabe, Keigo;Uchida, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1949-1954
    • /
    • 2005
  • One of control methods for underactuated manipulators is known as a switching control which selects a partially-stable controller using a prespecified switching rule. A switching computed torque control with a fuzzy energy region method was proposed. In this approach, some partly stable controllers are designed by the computed torque method, and a switching rule is based on fuzzy energy regions. Design parameters related to boundary curves of fuzzy energy regions are optimized offline by a genetic algorithm (GA). In this paper, we discuss on parameters obtained by GA. The effectiveness of the switching fuzzy energy method is demonstrated with some simulations.

  • PDF

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

Design of a Drilling Torque Controller in a Machining Center (머시닝센터에서 드릴링 토크 제어기의 설계)

  • 오영탁;권원태;주종남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.513-518
    • /
    • 2001
  • As the machining depth increases, the drilling torque increases and fluctuates and the risk of drill failure also increases. Hence, drilling torque control is very important to prevent the drill from failure. In this study, a PID controller was designed to control the drilling torque in a machining center. The plant including the feed drive system, cutting process, and spindle system was modeled for controller design. The Ziegler-Nichols rule was used to determine the controller gain and control action times. The root locus plot was used to tune the controller gain for a certain cutting condition. Also, suggested was a simple method to obtain the tuned controller gain for an arbitrary cutting condition not using the Ziegler-Nichols rule and root locus plot. The cutting torque control, performance of the designed controller and the effect of gain tuning on the control performance were examined.

  • PDF

Fundamental Experiments for Attitude Control of a Low Earth Orbit Satellite Using Ion Drag

  • Ohue, Miho;Koizumi, Hiroyuki;Kuninaka, Hitoshi;Nishida, Michio
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.561-565
    • /
    • 2008
  • Generally, reaction wheels or thrusters are used for attitude control of a satellite. There is a potential method for the attitude control utilizing the plasma flow on the Low Earth Orbit. In the present study, experiments which simulate attitude control of a Low Earth Orbit Satellite using the ionosphere were conducted. In this experiment, a plasma flow was generated by a steady-state Hall type accelerator. However it is known that the Hall type accelerator, which is used as plasma source, produces a torque around its axis called "swirl torque". This torque would affect the attitude control in the above-mentioned experiments. First of all, we conducted the measurement of the swirl torque. Secondly, experiments using a satellite model with negative electrodes were conducted. The negative electrodes generated torque around the axis, and controlled the attitude of the satellite model by changing the applied voltage.

  • PDF

Dynamic Control of Redundant Manipulators based on the Minors of Jacobian Matrix (쟈코비안 행렬의 마이너(Minor)에 기초한 여유자유도 로봇의 동력학적 제어)

  • Chung, W.J.;Chung, W.K.;Youm, Y.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.767-770
    • /
    • 1991
  • For the control of redundant manipulators, conventional dynamic control methods of local torque optimization showed the instability which resulted in physically unrealizable torque requirements. In this paper, a new dynamic control method which is based on the concept of aspects is proposed. The proposed method starts with the basic understanding of the minors in the Jacobian matrix. It was shown by computer simulations that the proposed method demonstrates a drastic reduction of torque loadings at the joints in the tracking motion of a long trajectory, and thus guarantees the stability of joint torque.

  • PDF