• Title/Summary/Keyword: Torque Assist System

Search Result 34, Processing Time 0.023 seconds

Control Logic Using Torque Map for a Column-Type Electric Power Steering System (토크맵을 이용한 칼럼형 전기식 동력조향 시스템의 제어로직)

  • 김지훈;송재복
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.186-193
    • /
    • 2000
  • EPS(Electric Power Steering) systems have many advantages over traditional hydraulic power steering systems in space efficiency engine efficiency and environmental compatibility. In this paper an EPS system control logic using a torque map is proposed. The main function of the EPS system is to reduce the steering torque exerted by a driver by assist of an electric motor. Vehcile speed steering torque and steering wheel angle are measured and fed back to the EPS control system where appropriate assist torque is generated to assist the operator's steering effort. Another capability of the EPS system for easy adaptation to different steering feels via simple tuning is demonstrated by the experiments. It will be also verified that the EPS system can also improve damping and return performance of the steering wheel by control of the assist motor.

  • PDF

Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm (C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발)

  • Park, Myung-Wook;Moon, Hee-Chang;Kim, Jung-Ha;Crane III, Carl D.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

Effects of EPS Assist Torque on On-center Steering Feel Indices (EPS 어시스트 토크에 의한 온 센터 조타감 성능지수 영향도 분석)

  • Kim, Sang Sup;Kyeong, Jin Sil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.186-193
    • /
    • 2014
  • On-center handling feel indices are the important numerical factors that meaning performance of manuability and stability felt by drivers. They should be considered to suspension design. The major factor that affect to these indices is the shape of assist torque curve. This paper presents the variables that meaning the shape of the assist torque curve and analyze the effect of each variables. And using interaction formulas, it is proposed that the method to extract the variables that satisfy the goal indices. The result of simulation that applied assist torque curve extracted by the method demonstrate the capability of this method with error under 8%.

Development of a Prototype New Electric Power Steering (EPS) System (Prototype의 새로운 Electric Power Steering (EPS) System의 개발)

  • Song Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6 s.249
    • /
    • pp.684-690
    • /
    • 2006
  • This study proposes and validates a new column type electric power steering system (EPS-TT). It is driven by a uni-directional motor and two electro-magnetic clutches. The assist motor produces assist torque in only one direction and two clutches transmit the torque to the column of steering system in either left or right direction with respect to the steering input. A full order and a reduced order models are developed to evaluate the EPS-TT. Models are also used to investigate the vehicle responses. A PID control logic is designed to control the torque of the assist motor. A driver model is applied to the system and the resulting performances are analyzed. The results show that the performances of the full order model are similar to those of reduced order model. The results also prove that the performances achieved by the EPS-TT are improved compared to those of a conventional EPS-TT across the frequency domain.

Evaluation of Performance and Development of Control Method of a New Electric Power Steering System(EPS-TT) (새로운 전동식 동력 조향 장치 (EPS-TT)의 성능 평가 및 제어방법 개발)

  • 송정훈;부광석;이종일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.5
    • /
    • pp.154-161
    • /
    • 2004
  • A new column type electric power steering system (EPS-TT) is proposed in this study. The remarkable features of EPS-TT are its opto-isolated torque sensor and assist torque control methodology. EPS-TT uses a uni-directional motor and two clutches. Full order and simplified models for EPS-TT are developed to evaluate the EPS-TT. A full car model is also used to investigate the vehicle responses. A PID control logic is designed to control the torque of the assist motor. Various sinusoidal inputs are applied to the system and the resulting performances are analyzed. The results prove that the performances achieved by the EPS-TT are improved compared to those of a conventional EPS-TT across the frequency domain. In addition, it is inexpensive and easy to control the motor. The results of the full order steering system model are similar to those simplified model, but the vehicle responses are slightly different.

Development of Torque Assisted Control Method for Integrated Starter/Alternato (토오크 보조 방식의 일체형 스타터 발전기 제어 방식 개발)

  • Oh, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.9-16
    • /
    • 2011
  • Research on ISA(Integrated Starter/Alternator) receives wide attention as system voltage is increased to 42V Based on requirement of starter and alternator for the conventional vehicle, system requirement and specification are determined. Also to control proposed system, suitable control methods are proposed. Main control issues with ISA are whether torque assist is required and if so how much torque is needed. In this paper, vehicle performance with various control methods and capacity are simulated and simulation results are analyzed. Vehicle performance is analyzed with vehicle simulator. For the simulation, suitable ISA model is also developed.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

Torque Control Simulation of the Column Type EPS System using MATLAB/Simulink (MATLAB/Simulink를 이용한 컬럼형 전동조향장치(EPS)의 토크제어 시뮬레이션)

  • Pang Du-Yeol;Lee Seong-Cheol;Jang Bong-Chun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.277-278
    • /
    • 2006
  • As a development of technology, electric power steering system which uses an electric motor came to use in recent and it can solve the problems with hydraulic power steering system. In this paper, vehicle model and electric power steering system are combined to fulfill full vehicle model. By simulation effect of motor torque assist through electric power steering revealed effective, and full vehicle model are proved reasonable through comparison with real car experimental datum.

  • PDF

Design of Lane Keeping Steering Assist Controller Using Vehicle Lateral Disturbance Estimation under Cross Wind (횡풍하의 차량 외란 추정을 이용한 차선 유지 조향 보조 제어기 설계)

  • Lim, Hyeongho;Joa, Eunhyek;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.13-19
    • /
    • 2020
  • This paper presents steering controller for unintended lane departure avoidance under crosswind using vehicle lateral disturbance estimation. Vehicles exposed to crosswind are more likely to deviate from lane, which can lead to accidents. To prevent this, a lateral disturbance estimator and steering controller for compensating disturbance have been proposed. The disturbance affecting lateral motion of the vehicle is estimated using Kalman filter, which is on the basis of the 2-DOF bicycle model and Electric Power Steering (EPS) module. A sliding mode controller is designed to avoid unintended the lane departure using the estimated disturbance. The controller is based on the 2-DOF bicycle model and the vision-based error dynamic model. A torque controller is used to provide appropriate assist torque to driver. The performance of proposed estimator and controller is evaluated via computer simulation using Matlab/Simulink.

Improvement of the Steering Feel of an Electric Power Steering System by Torque Map Modification

  • Lee Man Hyung;Ha Seung Ki;Choi Ju Yong;Yoon Kang Sup
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.792-801
    • /
    • 2005
  • This paper discusses a dc motor equipped electric power steering (EPS) system and demonstrates its advantages over a typical hydraulic power steering (HPS) system. The tire-road interaction torque at the steering tires is calculated using the 2 d.o.f. bicycle model, in other words by using a single-track model, which was verified with the J-turn test of a real vehicle. Because the detail parameters of a steering system are not easily acquired, a simple system is modeled here. In previous EPS systems, the assisting torque for the measured driving torque is developed as a boost curve similar to that of the HPS system. To improve steering stiffness and return-ability of the steering system, a third-order polynomial as a torque map is introduced and modified within the preferred driving torques researched by Bertollini. Using the torque map modification sufficiently improves the EPS system.