• Title/Summary/Keyword: Torch

Search Result 417, Processing Time 0.027 seconds

Prediction of the Edge Sealing Shape on the Vacuum Glazing Using the Nonlinear Regression Analysis (비선형회귀분석을 이용한 진공유리 모서리 접합단면 형상예측)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1016-1021
    • /
    • 2013
  • While using the hydrogen mixture gas torch, the glass edge sealing and the shape of the edge sealing parts is affected by many parameters such as flow rate of gas, traveling speed of torch, distance between glass and torch. As the glass edge sealing shape have effects on the insulation and airtightness and strength of the glass panel; the sealing shapes are predicted according to the process parameters. The paper highlight the nonlinear regression equations of the cross-sectional shape of the sealing shape according to the parameters, that is experimentally predicted later compared and verified the equation with the experimental result.

A Study on the Weavingless Arc Sensor System in GMA Welding (II) -Torch Height Control in Weld Seam Tracking (GMA 용접에서 강제적인 위빙이 없는 아크센서 시스템에 관한 연구 (II) -용접선 추적의 토치방향 높이제어-)

  • 안재현;김재웅
    • Journal of Welding and Joining
    • /
    • v.16 no.3
    • /
    • pp.55-63
    • /
    • 1998
  • Among the position sensing methods available, the arc sensor which utilizes the electrical signal obtained from the welding arc itself is one of the most prevalently used methods, because it has an advantage that no particular sensing device is necessary and real-time sensing of a groove position is possible directly under the arc. The authors have already developed a seam tracking system that contains a new arc sensor algorithm, which uses the relative welding current variation according to the tip-to-workpiece distance in GMA welding. In this study a torch height control algorithm for automatic weld seam tracking was proposed for completing the previous system, which uses an on-off control technique. To implement the torch height control algorithm during weld seam tracking the system parameters which include 2nd averaging range, weighting factor for 2nd moving averaging, and Z-directional basic compensation distance were determined by experimental analysis. Finally the two different height control methods, one is simple on-off control and the other on-off control using a reference current value , were compared in their tracking abilities.

  • PDF

Enhancement of the Life of Refractories through the Operational Experience of Plasma Torch Melter (플라즈마토치 용융로 운전경험을 통한 내화물 수명 증진 방안)

  • Moon, Young Pyo;Choi, Jang Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2016
  • The properties of wastes for melting need to be considered to minimize the maintenance of refractory and to discharge the molten slags smoothly from a plasma torch melter. When the nonflammable wastes from nuclear facilities such as concrete debris, glass, sand, etc., are melted, they become acid slags with low basicity since the chemical composition has much more acid oxides than basic oxides. A molten slag does not have good characteristics of discharge and is mainly responsible for the refractory erosion due to its low liquidity. In case of a stationary plasma torch melter with a slant tapping port on the wall, a fixed amount of molten slags remains inside of tapping hole as well as the melter inside after tapping out. Nonmetallic slags keep the temperature higher than melting point of metal because metallic slags located on the bottom of melter by specific gravity difference are simultaneously melted when dual mode plasma torch operates in transferred mode. In order to minimize the refractory erosion, the compatible refractories are selected considering the temperature inside the melter and the melting behavior of slags whether to contact or noncontact with molten slags. An acidic refractory shall not be installed in adjacent to a basic refractory for the resistibility against corrosion.

Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility (플라즈마 풍동 시설용 분절형 아크 플라즈마 토치의 이론적 설계변수 해석)

  • Seo, Jun-Ho;Choi, Soo-Seok;Choi, Seong-Man;Hong, Bong-Guen
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.4
    • /
    • pp.85-93
    • /
    • 2011
  • A parametric study is conducted for the design of segmented arc plasma torch with the input power and current of 0.4 MW and 300 A, respectively. For this purpose, we use the analytical relationship between input power, current condition, plasma temperature, inner diameter (R) and length (L) of the torch constrictor based on arc channel model. The results reveal that arc plasma temperatures increase monotonically as ��L increases or R decreases for the ranges of R ${\leq}$ 7.5 mm and L ${\leq}$ 1.25 m. For larger valuse of ��R and L than 7.5 mm and 1.25 m, respectively, however, they show non-linear behavior corresponding to the variations of ��L, which stands for the generation of unstable arc plasma. From this parametric study, optimum ranges of R and L are suggested as 5.5 mm ${\leq}$ R ${\leq}$ 7.5 mm and 0.25 m ${\leq}$ L ${\leq}$ 0.5 m for 0.4 MW class segmented arc plasma torch, under which stable arc plasma can be achieved at the input currents of ~300 A.

Analytical Analysis of Segmented Arc Plasma Torch for Plasma Wind Tunnel Facility (플라즈마 풍동 시설용 분절형 아크 플라즈마 토치의 해석적 설계변수 해석)

  • Seo, Jun-Ho;Choi, Soo-Seok;Choi, Seong-Man;Hong, Bong-Gun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.768-774
    • /
    • 2010
  • A parametric study is conducted for the segmented arc plasma torch with the input power and current of 0.4 MW and 300 A, respectively. For this purpose, we use the analytical relationship equations between plasma temperature, inner diameter (R) and length (L) of the torch constrictor at the given input power and current conditions based on the arc channel model. The results reveal that arc plasma temperatures show non-linear behavior or absence corresponding to the variations of L and R when their values become larger than 1.25 m and 7.5 mm, respectively. For L < 1.25 m and R < 7.5 mm, however, they can increase monotonically as L increase or R decrease when one of both parameters is fixed. From these parametric study results, optimum ranges of R and L are suggested as $5.5mm{\leq}R{\leq}7.0mm$ and $0.5m{\leq}L{\leq}1.0m$ for 0.4 MW class segmented arc plasma torch, under which stable arc plasma with the temperatures of ~15,000 K can be achived at the input currents of ~300 A.

  • PDF

Numerical calculations of characteristics of Argon arc plasma using the control volume method (제어체적법에 의한 Ar 아크 플라즈마의 특성 계산)

  • Kim, Oe-Dong;Ko, Kwang-Cheol;Kang, Hyung-Boo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1404-1406
    • /
    • 1995
  • In this paper, argon gas was used for numerical analysis of an arc in a cutting plasma torch driven by constant current. We established nozzle-constricting type torch domain and calculated steady state characteristics of argon arc plasma using the control volume method(CVM). For simplicity, we assumed that the flow field is laminar and the local thermodynamic equilibrium(LTE) prevails in all domain regions. We also neglected cathode-fall and anode-fall effects. Considering magnetic pinch effect and viscosity effect, we solved the momentum equation. Voltage drop in the arc column due to input current was calculated from the temperature field obtained by the energy balance equation.

  • PDF

A Simple Nonlinear Control of a Two-Wheeled Welding Mobile Robot

  • Bui, Trong-Hieu;Nguyen, Tan-Tien;Chung, Tan-Lam;Kim, Sang-Bong
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • This paper proposes a simple, robust, nonlinear controller based on Lyapunov stability for tracking the reference welding path and velocity of a two-wheeled welding mobile robot (WMR). The system has three degrees of freedom including two wheels and one torch slider. Torch slider motion is used for faster tracking because the welding speed is very slow. Control law is obtained from the Lyapunov control function to ensure the asymptotical stability of the system. The controller has three free parameters for adjusting the performance of the controlled system. A simple way of measuring the errors using two potentiometers is introduced. The effectiveness of the proposed controller is shown through simulation results.