• Title/Summary/Keyword: Topology Design Method

Search Result 461, Processing Time 0.025 seconds

A Parameter Selection Method for Multi-Element Resonant Converters with a Resonant Zero Point

  • Wang, Yifeng;Yang, Liang;Li, Guodong;Tu, Shijie
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.332-342
    • /
    • 2018
  • This paper proposes a parameter design method for multi-element resonant converters (MERCs) with a unique resonant zero point (RZP). This method is mainly composed of four steps. These steps include program filtration, loss comparison, 3D figure fine-tuning and priority compromise. It features easy implementation, effectiveness and universal applicability for almost all of the existing RZP-MERCs. Meanwhile, other design methods are always exclusive for a specific topology. In addition, a novel dual-CTL converter is also proposed here. It belongs to the RZP-MERC family and is designed in detail to explain the process of parameter selection. The performance of the proposed method is verified experimentally on a 500W prototype. The obtained results indicate that with the selected parameters, an extensive dc voltage gain is obtained. It also possesses over-current protection and minimal switching loss. The designed converter achieves high efficiencies among wide load ranges, and the peak efficiency reaches 96.9%.

Differentiated Quality of Service Model in the Internet (인터넷에서의 차별화된 서비스품질 제공 방안)

  • Kim, Dong-Chul;Jang, Hee-Seon
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.193-202
    • /
    • 2010
  • The quality of service(QoS) model should be presented with the optimal network design to effectively provide the multimedia data services between users and converged services with mobile or TV in the next-generation Internet. In specific, the method to provide differentiated services for each user is needed in the given Internet node to offer the previously negotiated QoS with the user. In this paper, the performance of the QoS enabling technologies in the differentiated services(DiffServ) network domain is analyzed. The QoS offering model and QoS metrics are presented to analyze the performance of the major scheduling algorithms. Under the real network topology and virtual service scenarios in the university, the NS-2 network simulation based on the discrete-event is performed. The results show that the ratio-based scheduling method is more effective rather than the bandwidth-assignment method.

Numerical stability and parameters study of an improved bi-directional evolutionary structural optimization method

  • Huang, X.;Xie, Y.M.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • This paper presents a modified and improved bi-directional evolutionary structural optimization (BESO) method for topology optimization. A sensitivity filter which has been used in other optimization methods is introduced into BESO so that the design solutions become mesh-independent. To improve the convergence of the optimization process, the sensitivity number considers its historical information. Numerical examples show the effectiveness of the modified BESO method in obtaining convergent and mesh-independent solutions. A study of the effects of various BESO parameters on the solution is then conducted to determine the appropriate values for these parameters.

Design of Granular-based Neurocomputing Networks for Modeling of Linear-Type Superconducting Power Supply (리니어형 초전도 전원장치 모델링을 위한 입자화 기반 Neurocomputing 네트워크 설계)

  • Park, Ho-Sung;Chung, Yoon-Do;Kim, Hyun-Ki;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1320-1326
    • /
    • 2010
  • In this paper, we develop a design methodology of granular-based neurocomputing networks realized with the aid of the clustering techniques. The objective of this paper is modeling and evaluation of approximation and generalization capability of the Linear-Type Superconducting Power Supply (LTSPS). In contrast with the plethora of existing approaches, here we promote a development strategy in which a topology of the network is predominantly based upon a collection of information granules formed on a basis of available experimental data. The underlying design tool guiding the development of the granular-based neurocomputing networks revolves around the Fuzzy C-Means (FCM) clustering method and the Radial Basis Function (RBF) neural network. In contrast to "standard" Radial Basis Function neural networks, the output neuron of the network exhibits a certain functional nature as its connections are realized as local linear whose location is determined by the membership values of the input space with the aid of FCM clustering. To modeling and evaluation of performance of the linear-type superconducting power supply using the proposed network, we describe a detailed characteristic of the proposed model using a well-known NASA software project data.

Design of High Frequency Heating Power Supply System Using Peck Current Mode Control (피크전류모드 제어를 적용한 고주파 심부발열 전원장치 설계)

  • Xu, Guo-Cheng;Zheng, Tao;Piao, Sheng-Xu;Qiu, Wei-Jing;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.61-65
    • /
    • 2017
  • In this paper a prototype of high frequency heating power supply system based on the high frequency heating principle is designed to take the place of acupuncture, moxibustion, warm dressing treatment and some other traditional physical therapy methods. Which possess the advantages of low cost, convenient, easy operation and good effect. The high frequency heating power supply can generate a pulse voltage of more than 1KV with 300KHz switching frequency to heat the patient's skin. The skin temperature can reach to $41{\sim}42^{\circ}C$. The peak current control method is used to maintain the skin temperature in the designed range. The design of the main circuit is based on the flyback converter topology. An easier and practical design method is proposed in this paper. The power supply system prototype is verified to be stable and reliable by both the simulation and experimental results.

A Study on Extraction and its Storage method of Topological Information from Common 2-D CAD Using The Boundary-Representation Method (범용 2D MCAD 상에서 경계표현법을 이용한 위상 정보 추출 및 그 저장방식에 관한 연구)

  • Hong, Sang-Hoon;Han, Seong-Young;Kim, Yong-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.25-34
    • /
    • 1999
  • In spite of the advance of 3D solid modeling technology, there are some distinct areas where 2D CAD S/W are still dominant, and more competent comparing with 3D CAD S/W. For example, in the manufacturing of 2D-shaped electrical parts, most related manufacturing tools have 2D geometric features by nature, and 3D solid models applied to these parts have substantial overheads. Nevertheless, most 2D CAD S/W have no topological inquiry services because they have no such information on their geometrical database inherently. Thus, it is needed to extract such information from 2D CAD database for developing more advanced application such as automated drafting/design S/W. In this paper, the extraction of topological information from 2D CAD has been performed in general way using concept of B-rep. A general extraction algorithm, data structure and meta file format for 2D topological object have been developed and successfully applied to the development of the automated lead frame die design system in Samsung Aerospace. it is also possible to provide a flexible, powerful topology-oriented functionality on any common 2D CAD S/W.

  • PDF

An Internet Gateway Based Link State Routing for Infrastructure-Based Mobile Ad Hoc Networks (인프라구조 기반의 이동 애드혹 네트워크를 위한 인터넷 게이트웨이 중심의 링크상태 라우팅 프로토콜)

  • Lee, Sung Uk;Ngo, Chi-Trung;Han, Trung-Dinh;Kim, Je-Wook;Oh, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.10
    • /
    • pp.859-876
    • /
    • 2012
  • Since the existing protocols separated mobility management part and routing protocol part in their design and used a flooding, they suffer from the high control overhead, thereby limiting performance. In this paper, we use a tree-based mobility management method and present a simple and efficient routing protocol that exploits the topology information which is built additionally through mobility management. Thus, the mobility management and the routing protocol closely cooperate to optimize control overhead. Furthermore, we use a progressive path discovery method to alleviate traffic congestion around IG and a unicast-based broadcast method to increase the reliability of message delivery and to judge link validity promptly. The proposed protocol reduces control overhead greatly and works in a stable manner even with the large number of nodes and high mobility. This was proven by comparing with the AODV protocol that employs the hybrid mobility management protocol.

Seismic behavior of thin cold-formed steel plate shear walls with different perforation patterns

  • Monsef Ahmadi, H.;Sheidaii, M.R.;Tariverdilo, S.;Formisano, A.;De Matteis, G.
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.377-388
    • /
    • 2021
  • Thin perforated Steel Plate Shear Walls (SPSWs) are among the most common types of seismic energy dissipation systems to protect the main boundary components of SPSWs from fatal fractures in the high-risk zones. In this paper, the cyclic behavior of the different circular hole patterns under cyclic loading is reported. Based on the experimental results, it can be concluded that a change in the perforation pattern of the circular holes leads to a change in the locations of the fracture tendency over the web plate, especially at the plate-frame interactions. Accordingly, the cyclic responses of the tested specimens were simulated by finite element method using the ABAQUS package. Likewise, perforated shear panels with a new perforation pattern obtained by implementing Topology Optimization (TO) were proposed. It was found that the ultimate shear strength of the specimen with the proposed TO perforation pattern was higher than that of the other specimens. In addition, theoretical equations using the Plate-Frame Interaction (PFI) method were used to predict the shear strength and initial stiffness of the considered specimens. The theoretical results showed that the proposed reduced coefficients relationships cannot accurately predict the shear strength and initial stiffness of the considered perforated shear panels. Therefore, the reduced coefficients should be adopted in the theoretical equations based on the obtained experimental and numerical results. Finally, with the results of this study, the shear strength and initial stiffness of these types of perforated shear panels can be predicted by PFI method.

Constellation Multi-Objective Optimization Design Based on QoS and Network Stability in LEO Satellite Broadband Networks

  • Yan, Dawei;You, Peng;Liu, Cong;Yong, Shaowei;Guan, Dongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1260-1283
    • /
    • 2019
  • Low earth orbit (LEO) satellite broadband network is a crucial part of the space information network. LEO satellite constellation design is a top-level design, which plays a decisive role in the overall performance of the LEO satellite network. However, the existing works on constellation design mainly focus on the coverage criterion and rarely take network performance into the design process. In this article, we develop a unified framework for constellation optimization design in LEO satellite broadband networks. Several design criteria including network performance and coverage capability are combined into the design process. Firstly, the quality of service (QoS) metrics is presented to evaluate the performance of the LEO satellite broadband network. Also, we propose a network stability model for the rapid change of the satellite network topology. Besides, a mathematical model of constellation optimization design is formulated by considering the network cost-efficiency and stability. Then, an optimization algorithm based on non-dominated sorting genetic algorithm-II (NSGA-II) is provided for the problem of constellation design. Finally, the proposed method is further evaluated through numerical simulations. Simulation results validate the proposed method and show that it is an efficient and effective approach for solving the problem of constellation design in LEO satellite broadband networks.

Consensus-Based Formation Tracking of Fuzzy Multi-Agent Systems (이산시간 퍼지 다개체 시스템의 상태일치 기반 대형 추종 제어기)

  • Moon, Ji Hyun;Jee, Sung Chul;Lee, Ho Jae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.8
    • /
    • pp.1080-1084
    • /
    • 2014
  • This paper addresses a design technique for formation tracking controllers of discrete-time Takagi-Sugeno fuzzy multi-agent systems based on consensus. The interconnection topology among the agents is expressed as a digraph. The design condition is represented in terms of linear matrix inequalities. Numerical example demonstrates the effectiveness of the proposed method.