• Title/Summary/Keyword: Topic Segmentation

Search Result 36, Processing Time 0.024 seconds

Topic Masks for Image Segmentation

  • Jeong, Young-Seob;Lim, Chae-Gyun;Jeong, Byeong-Soo;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3274-3292
    • /
    • 2013
  • Unsupervised methods for image segmentation are recently drawing attention because most images do not have labels or tags. A topic model is such an unsupervised probabilistic method that captures latent aspects of data, where each latent aspect, or a topic, is associated with one homogeneous region. The results of topic models, however, usually have noises, which decreases the overall segmentation performance. In this paper, to improve the performance of image segmentation using topic models, we propose two topic masks applicable to topic assignments of homogeneous regions obtained from topic models. The topic masks capture the noises among the assigned topic assignments or topic labels, and remove the noises by replacements, just like image masks for pixels. However, as the nature of topic assignments is different from image pixels, the topic masks have properties that are different from the existing image masks for pixels. There are two contributions of this paper. First, the topic masks can be used to reduce the noises of topic assignments obtained from topic models for image segmentation tasks. Second, we test the effectiveness of the topic masks by applying them to segmented images obtained from the Latent Dirichlet Allocation model and the Spatial Latent Dirichlet Allocation model upon the MSRC image dataset. The empirical results show that one of the masks successfully reduces the topic noises.

On-Line Topic Segmentation Using Convolutional Neural Networks (합성곱 신경망을 이용한 On-Line 주제 분리)

  • Lee, Gyoung Ho;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.11
    • /
    • pp.585-592
    • /
    • 2016
  • A topic segmentation module is to divide statements or conversations into certain topic units. Until now, topic segmentation has progressed in the direction of finding an optimized set of segments for a whole document, considering it all together. However, some applications need topic segmentation for a part of document which is not finished yet. In this paper, we propose a model to perform topic segmentation during the progress of the statement with a supervised learning model that uses a convolution neural network. In order to show the effectiveness of our model, we perform experiments of topic segmentation both on-line status and off-line status using C99 algorithm. We can see that our model achieves 17.8 and 11.95 of Pk score, respectively.

Interest-based Customer Segmentation Methodology Using Topic Modeling (토픽 분석을 활용한 관심 기반 고객 세분화 방법론)

  • Hyun, Yoonjin;Kim, Namgyu;Cho, Yoonho
    • Journal of Information Technology Applications and Management
    • /
    • v.22 no.1
    • /
    • pp.77-93
    • /
    • 2015
  • As the range of the customer choice becomes more diverse, the average life span of companies' products and services is becoming shorter. Most companies are striving to maximize the revenue by understanding the customer's needs and providing customized products and services. However, companies had to bear a significant burden, in terms of the time and cost involved in the process of determining each individual customer's needs. Therefore, an alternative method is employed that involves grouping the customers into different categories based on certain criteria and establishing a marketing strategy tailored for each group. In this way, customer segmentation and customer clustering are performed using demographic information and behavioral information. Demographic information included sex, age, income level, and etc., while behavioral information was usually identified indirectly through customers' purchase history and search history. However, there is a limitation regarding companies' customer behavioral information, because the information is usually obtained through the limited data provided by a customer on a company's website. This is because the pattern indicated when a customer accesses a particular site might not be representative of the general tendency of that customer. Therefore, in this study, rather than the pattern indicated through a particular site, a customer's interest is identified using that customer's access record pertaining to external news. Hence, by utilizing this method, we proposed a methodology to perform customer segmentation. In addition, by extracting the main issues through a topic analysis covering approximately 3,000 Internet news articles, the actual experiment applying customer segmentation is performed and the applicability of the proposed methodology is analyzed.

A Focused Crawler by Segmentation of Context Information (주변정보 분할을 이용한 주제 중심 웹 문서 수집기)

  • Cho, Chang-Hee;Lee, Nam-Yong;Kang, Jin-Bum;Yang, Jae-Young;Choi, Joong-Min
    • The KIPS Transactions:PartB
    • /
    • v.12B no.6 s.102
    • /
    • pp.697-702
    • /
    • 2005
  • The focused crawler is a topic-driven document-collecting crawler that was suggested as a promising alternative of maintaining up-to-date web document Indices in search engines. A major problem inherent in previous focused crawlers is the liability of missing highly relevant documents that are linked from off-topic documents. This problem mainly originated from the lack of consideration of structural information in a document. Traditional weighting method such as TFIDF employed in document classification can lead to this problem. In order to improve the performance of focused crawlers, this paper proposes a scheme of locality-based document segmentation to determine the relevance of a document to a specific topic. We segment a document into a set of sub-documents using contextual features around the hyperlinks. This information is used to determine whether the crawler would fetch the documents that are linked from hyperlinks in an off-topic document.

Segmentation and Classification of Lidar data

  • Tseng, Yi-Hsing;Wang, Miao
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.153-155
    • /
    • 2003
  • Laser scanning has become a viable technique for the collection of a large amount of accurate 3D point data densely distributed on the scanned object surface. The inherent 3D nature of the sub-randomly distributed point cloud provides abundant spatial information. To explore valuable spatial information from laser scanned data becomes an active research topic, for instance extracting digital elevation model, building models, and vegetation volumes. The sub-randomly distributed point cloud should be segmented and classified before the extraction of spatial information. This paper investigates some exist segmentation methods, and then proposes an octree-based split-and-merge segmentation method to divide lidar data into clusters belonging to 3D planes. Therefore, the classification of lidar data can be performed based on the derived attributes of extracted 3D planes. The test results of both ground and airborne lidar data show the potential of applying this method to extract spatial features from lidar data.

  • PDF

The Improvement of Rough- set Theory Histogram in Color- image Segmentation

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.429-430
    • /
    • 2011
  • Roughness set theory is a popular topic to use in color-image segmentation. A new popular color image segmentation algorithm is proposed by scientists with the point using traditional histogram and Histon construct roughness set histogram. But, there is still a problem about that is the correlativity of color vector in roughness set histogram, which take an inactive effect in the process of color-image segmentation. Therefore, this paper represents further research based on this and proposed an improved method proved through lot of experiments. The experimental result reduces the correlativity of color vector in roughness set histogram and calculation time remarkably.

DA-Res2Net: a novel Densely connected residual Attention network for image semantic segmentation

  • Zhao, Xiaopin;Liu, Weibin;Xing, Weiwei;Wei, Xiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4426-4442
    • /
    • 2020
  • Since scene segmentation is becoming a hot topic in the field of autonomous driving and medical image analysis, researchers are actively trying new methods to improve segmentation accuracy. At present, the main issues in image semantic segmentation are intra-class inconsistency and inter-class indistinction. From our analysis, the lack of global information as well as macroscopic discrimination on the object are the two main reasons. In this paper, we propose a Densely connected residual Attention network (DA-Res2Net) which consists of a dense residual network and channel attention guidance module to deal with these problems and improve the accuracy of image segmentation. Specifically, in order to make the extracted features equipped with stronger multi-scale characteristics, a densely connected residual network is proposed as a feature extractor. Furthermore, to improve the representativeness of each channel feature, we design a Channel-Attention-Guide module to make the model focusing on the high-level semantic features and low-level location features simultaneously. Experimental results show that the method achieves significant performance on various datasets. Compared to other state-of-the-art methods, the proposed method reaches the mean IOU accuracy of 83.2% on PASCAL VOC 2012 and 79.7% on Cityscapes dataset, respectively.

Keypoint-based Deep Learning Approach for Building Footprint Extraction Using Aerial Images

  • Jeong, Doyoung;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.111-122
    • /
    • 2021
  • Building footprint extraction is an active topic in the domain of remote sensing, since buildings are a fundamental unit of urban areas. Deep convolutional neural networks successfully perform footprint extraction from optical satellite images. However, semantic segmentation produces coarse results in the output, such as blurred and rounded boundaries, which are caused by the use of convolutional layers with large receptive fields and pooling layers. The objective of this study is to generate visually enhanced building objects by directly extracting the vertices of individual buildings by combining instance segmentation and keypoint detection. The target keypoints in building extraction are defined as points of interest based on the local image gradient direction, that is, the vertices of a building polygon. The proposed framework follows a two-stage, top-down approach that is divided into object detection and keypoint estimation. Keypoints between instances are distinguished by merging the rough segmentation masks and the local features of regions of interest. A building polygon is created by grouping the predicted keypoints through a simple geometric method. Our model achieved an F1-score of 0.650 with an mIoU of 62.6 for building footprint extraction using the OpenCitesAI dataset. The results demonstrated that the proposed framework using keypoint estimation exhibited better segmentation performance when compared with Mask R-CNN in terms of both qualitative and quantitative results.

A Saliency Map based on Color Boosting and Maximum Symmetric Surround

  • Huynh, Trung Manh;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 2013
  • Nowadays, the saliency region detection has become a popular research topic because of its uses for many applications like object recognition and object segmentation. Some of recent methods apply color distinctiveness based on an analysis of statistics of color image derivatives in order to boosting color saliency can produce the good saliency maps. However, if the salient regions comprise more than half the pixels of the image or the background is complex, it may cause bad results. In this paper, we introduce the method to handle these problems by using maximum symmetric surround. The results show that our method outperforms the previous algorithms. We also show the segmentation results by using Otsu's method.

  • PDF

Identifying the Interests of Web Category Visitors Using Topic Analysis (토픽 분석을 활용한 웹 카테고리별 방문자 관심 이슈 식별 방안)

  • Choi, Seongi;Kim, Namgyu
    • Journal of Information Technology Applications and Management
    • /
    • v.21 no.4_spc
    • /
    • pp.415-429
    • /
    • 2014
  • With the advent of smart devices, users are able to connect to each other through the Internet without the constraints of time and space. Because the Internet has become increasingly important to users in their everyday lives, reliance on it has grown. As a result, the number of web sites constantly increases and the competition between these sites becomes more intense. Even those sites that operate successfully struggle to establish new strategies for customer retention and customer development in order to survive. Many companies use various customer information in order to establish marketing strategies based on customer group segmentation A method commonly used to determine the customer groups of individual sites is to infer customer characteristics based on the customers' demographic information. However, such information cannot sufficiently represent the real characteristics of customers. For example, users who have similar demographic characteristics could nonetheless have different interests and, therefore, different buying needs. Hence, in this study, customers' interests are first identified through an analysis of their Internet news inquiry records. This information is then integrated in order to identify each web category. The study then analyzes the possibilities for the practical use of the proposed methodology through its application to actual Internet news inquiry records and web site browsing histories.