• Title/Summary/Keyword: Topex/Poseidon Altimeter

Search Result 41, Processing Time 0.019 seconds

The Altimeter Geoid of the Region of Korean peninsula

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.13 no.1
    • /
    • pp.61-68
    • /
    • 1995
  • This paper is to provide a reference surface geoid for geodetic applications of satellite altimeter data. The paticular satellite alone or the combination with other altimeter data could be used for the recovery of geoid un-dulations and gravity anomalies in the ocean areas. This paper also describes the geoidal undulation in the ocean area of Korean Peninusla using Geosat, ERS-1 and Topex/Poseidon data. The results show that the quasi-stationary sea surface topography (557) is estimated to be less than 10 cm RMS value in the ocean area of Korean Peninsula. This can be considered as an altimeter geoid.

  • PDF

Sea Level Variations in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo;Kim, Sangwoo;Lee, Moon-Ock;Park, Il-Heum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.300-303
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON (T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level valibility, with strong eddy and meandaring, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extention area.

  • PDF

SL/SST variations and their correlations in the North East Asian Sens by remote sensing (Topex/Poseidon, NOAA)

  • Yoon, Hong-Joo
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.297-299
    • /
    • 2003
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

  • PDF

Sea Level Variabilities in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1190-1194
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON(T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/]P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and 52. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific(NP) was higher than Yellow Sea(YS) and East Sea(ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

Variability and Horizontal Structure of Sea Surface Height Anomaly Estimated from Topex/poseidon Altimeter in the East (Japan) Sea (동해의 Topex/Poseidon 고도계로부터 추정된 해면고도이상치의 수평구조와 변동성)

  • Kim, Eung;Ro, Young-Jae;Kim, Chang-Shik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.94-110
    • /
    • 2003
  • This study utilizes the dataset of Topex/Poseidon(T/P) altimeter sea surface height (1992-2000 yr., 286 cycles)to investigate the tempore-spatial variability in the East (Japan) Sea. Optimal interpolation (Ol) technique was applied to the pre-processed T/P dataset (level 2) to produce sea surface height anomaly (SSHA) map on regular grids. Spectral analyses of the timeseries of the SSHA at chosen stations and empirical orthogonal function (EOF) analysis of the SSHA in the entire East Sea were made. Distribution of the SSHA can be divided by the southern and northern regions sharply by the polar front situated in the middle of the East Sea. The southern region under the direct influence of the Tsushima Current exhibits higher amplitude of the SSHA fluctuation, while the northern region does relatively smaller one. The spatio-temporal variability of the SSHA in the East Sea can be characterized by the five modes of the EOFs accounting for more than 85% of the total variance. The first mode dominates the SSHA variation in the entire domain with strong seasonal and inter-annual periods accounting for the 72.3% of the total variance. The other modes (up to 5th account for 14%) are responsible for the SSHA variation associated with the local current system, meandering of the polar frontal axis, and mesoscale eddies. Spectral peaks with significant confluence level show semi-annual, annual and interannual (2, 3-4 years) periods.

Comparison of Sea Level Data from Topex/Poseidon in-situ Tide-Gauges in the East Sea (한반도 동해상에서의 Topex/Poseidon 고도자료와 현장 조위계 관측 자료의 비교연구)

  • Youn, Yong-Hoon;Kim, Na-Young;Kim, Ki-Hyun;Hwang, Jong-Sun;Kim, Jeong-Woo
    • Journal of the Korean earth science society
    • /
    • v.23 no.4
    • /
    • pp.349-356
    • /
    • 2002
  • In an effort to properly assess the validity of spaceborne radar altimeter measurements, we made a direct comparison of two different sea surface heights (SSH) acquired by both Topex/Poseidon (T/P) satellite and in-situ tide-gauges (T/G). This comparative analysis was conducted using the data sets collected from three locations along the eastern coast of Korea which include: Ulleungdo, Pohang, and Sokcho. In the course of the analysis of satellite altimeter, information of SSH was extracted from the T/P MGDR data sets through the application of both atmospheric and geophysical corrections. To compare the T/P data sets in parallel basis, the T/G data sets were averaged using the measured values within the peripheral radius of 55km. When compared among different locations, the compatibility between the two methods was much more significant in an offshore location (Ulleungdo) than the two onshore locations (Pohang, Sokcho). If the low-pass filtered results were compared among the sites, the offshore site exhibited the best correlations between the two methods (correlation coefficient of 0.91) than those of the onshore sites. These large differences in the strength of correlations among different locations are due to the deformation of M2, S2, and K1 tidal components used in the tidal model. In case of the offshore location, the compatibility of the two different methods were improved systematically by the low-pass filtering with an increase of the filtering duration such as up to 200 days.

Eddy Kinetic Energy in the East Sea Estimated from Topex/Poseidon Altimeter Measurements

  • Cho Kwangwoo;Cho Kyu-Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.219-228
    • /
    • 2002
  • Based on the five-year (October 1992 through September 1997) Topex/Poseidon altimeter measurements, we describe the statistical characteristics of the eddy variability in the East Sea in terms of sea surface height anomaly, slope variability, and eddy kinetic energy (EKE). The sea surface height anomalies in the East Sea are produced with standard corrections from Topex/Poseidon measurements. In order to eliminate the high frequency noise in the sea surface height anomaly data, the alongtrack height anomaly data was filtered by about 40 km low-pass Lanczos filter based on Strub et al. (1997) and Kelly et a1. (1998). We find that there exists a distinct spatial contrast of high eddy variability in the south and low eddy energy in the north, bordering the Polar Front. In the northwestern area $(north\;of\;39^{\circ}N\;and\;west\;of\;133^{\circ}E)$ from the Polar Front where the eddies frequently appear, the EKE is also considerabel. The high kinetic energy in the southern East Sea reveals a close connection with the paths of the Tsushima Warm Current, suggesting that the high variability in the south is mainly generated by the baroclinic instability process of the Tsushima Warm Current. This finding is supported by other studies (Fu and Zlontnicki, 1989; Stammer, 1997) wh.ch have shown the strong eddy energy coupled in the major current system. The monthly variation of the EKE in both areas of high and low eddy variability shows a strong seasonality of a high eddy kinetic energy from October to February and a relatively low one from March to September. The sequential pattern of wind stress curl shows resemblance with those of monthly and seasonal EKE and the two sequences have a correlation of 0.82 and 0.67, respectively, providing an evidence that wind stress curl can be the possible forcing for the monthly and seasonal variation of the EKE in the East Sea. The seasonality of the EKE also seems to correlate with the seasonality of the Tsushima Warm Current. There also exists the large spatial and interannual variabilities in the EKE.