• Title/Summary/Keyword: Top-k 질의 처리

Search Result 73, Processing Time 0.031 seconds

A Comparison and Study among Reverse Top-k Query Methods (Reverse Top-k 질의 처리 방법 비교 및 문제점 분석)

  • Ihm, Sun-Young;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1162-1164
    • /
    • 2013
  • Top-k 질의 처리가 사용자가 원하는 데이터를 검색하는 방법인 반면에, Reverse Top-k 질의 처리는 데이터의 관점에서 특정 데이터를 가장 선호할 만한 사용자를 검색하는 방법으로 생산자의 입장에서 매우 중요한 연구이다. 본 논문에서는 Reverse Top-k 질의 처리 방법들을 소개하고 비교 및 문제점을 분석한다.

Efficient Top-k Query Processing Algorithm Using Grid Index-based View Selection Method (그리드 인덱스 기반 뷰 선택 기법을 이용한 효율적인 Top-k 질의처리 알고리즘)

  • Hong, Seungtae;Youn, Deulnyeok;Chang, Jae Woo
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.76-81
    • /
    • 2015
  • Research on top-k query processing algorithms for analyzing big data have been spotlighted recently. However, because existing top-k query processing algorithms do not provide an efficient index structure, they incur high query processing costs and cannot support various types of queries. To solve these problems, we propose a top-k query processing algorithm using a view selection method based on a grid index. The proposed algorithm reduces the query processing time by retrieving the minimum number of grid cells for the query range, by using a grid index-based view selection method. Finally, we show from our performance analysis that the proposed scheme outperforms an existing scheme, in terms of both query processing time and query result accuracy.

A Cluster-Based Top-k Query Processing Algorithm in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 기반의 Top-k 질의 처리)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.4
    • /
    • pp.306-313
    • /
    • 2009
  • Top-k queries are issued to find out the highest (or lowest) readings in many sensor applications. Many top-k query processing algorithms are proposed to reduce energy consumption; FILA installs a filter at each sensor node and suppress unnecessary sensor updates; PRIM allots priorities to sensor nodes and collects the minimal number of sensor reading according to the priorities. However, if many sensor reading converge into the same range of sensor values, it leads to a problem that many false positives are occurred. In this paper, we propose a cluster-based approach to reduce them effectively. Our proposed algorithm operates in two phases: top-k query processing in the cluster level and top-k query processing in the tree level. False positives are effectively filtered out in each level. Performance evaluations show that our proposed algorithm reduces about 70% false positives and achieves about 105% better performance than the existing top-k algorithms in terms of the network lifetime.

Data-Aware Priority-Based Energy Efficient Top-k Query Processing in Sensor Networks (센서 네트워크를 위한 데이터 인지 우선순위 기반의 에너지 효율적인 Top-k 질의 처리)

  • Yeo, Myung-Ho;Seong, Dong-Ook;Yoo, Jae-Soo
    • Journal of KIISE:Databases
    • /
    • v.36 no.3
    • /
    • pp.189-197
    • /
    • 2009
  • Top-k queries are important to many wireless sensor applications. Conventional Top-k query processing algorithms install a filter at each sensor node and suppress unnecessary sensor updates. However, they have some drawbacks that the sensor nodes consume energy extremely to probe sensor reading or update filters. Especially, it becomes worse, when the variation ratio of top-k result is higher. In this paper, we propose a novel Top-k query processing algorithm for energy-efficiency. First, each sensor determines its priority as the order of data gathering. Next, sensor nodes that have higher priority transmit their sensor readings to the base station until gathering k sensor readings. In order to show the superiority of our query processing algorithm, we simulate the performance with the existing query processing algorithms. As a result, our experimental results show that the network lifetime of our method is prolonged largely over the existing method.

An Survey on Top-k Query Processing using Convex Hulls (Convex hull을 사용하는 Top-k 질의처리 방법에 관한 분석)

  • Lee, Ji-Hyeon;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2012.04a
    • /
    • pp.1073-1074
    • /
    • 2012
  • 최근 인터넷의 발달과 사용량의 증가로 데이터의 양이 급증함에 따라 대용량 데이터를 효율적으로 검색하는 top k 질의 처리가 중요시 되고 있다. Layer 기반 방법은 가장 잘 알려진 top k 질의처리 방법이며, 객체의 모든 속성의 값들을 이용하여 객체들을 layer들의 리스트로 구성하는 방법이다. 본 논문에서는 그 중에서 convex hull을 사용하여 layer list를 생성하는 기존 연구를 조사하고 문제점을 파악한다.

Abstracted Partitioned-Layer Index: A Top-k Query Processing Method Reducing the Number of Random Accesses of the Partitioned-Layer Index (요약된 Partitioned-Layer Index: Partitioned-Layer Index의 임의 접근 횟수를 줄이는 Top-k 질의 처리 방법)

  • Heo, Jun-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.9
    • /
    • pp.1299-1313
    • /
    • 2010
  • Top-k queries return k objects that users most want in the database. The Partitioned-Layer Index (simply, the PL -index) is a representative method for processing the top-k queries efficiently. The PL-index partitions the database into a number of smaller databases, and then, for each partitioned database, constructs a list of sublayers over the partitioned database. Here, the $i^{th}$ sublayer in the partitioned database has the objects that can be the top-i object in the partitioned one. To retrieve top k results, the PL-index merges the sublayer lists depending on the user's query. The PL-index has the advantage of reading a very small number of objects from the database when processing the queries. However, since many random accesses occur in merging the sublayer lists, query performance of the PL-index is not good in environments like disk-based databases. In this paper, we propose the Abstracted Partitioned-Layer Index (simply, the APL-index) that significantly improves the query performance of the PL-index in disk-based environments by reducing the number of random accesses. First, by abstracting each sublayer of the PL -index into a virtual (point) object, we transform the lists of sublayers into those of virtual objects (ie., the APL-index). Then, we virtually process the given query by using the APL-index and, accordingly, predict sublayers that are to be read when actually processing the query. Next, we read the sublayers predicted from each sublayer list at a time. Accordingly, we reduce the number of random accesses that occur in the PL-index. Experimental results using synthetic and real data sets show that our APL-index proposed can significantly reduce the number of random accesses occurring in the PL-index.

An Efficient Top-k Query Processing Algorithm over Encrypted Outsourced-Data in the Cloud (아웃소싱 암호화 데이터에 대한 효율적인 Top-k 질의 처리 알고리즘)

  • Kim, Jong Wook;Suh, Young-Kyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.12
    • /
    • pp.543-548
    • /
    • 2015
  • Recently top-k query processing has been extremely important along with the explosion of data produced by a variety of applications. Top-k queries return the best k results ordered by a user-provided monotone scoring function. As cloud computing service has been getting more popular than ever, a hot attention has been paid to cloud-based data outsourcing in which clients' data are stored and managed by the cloud. The cloud-based data outsourcing, though, exposes a critical secuity concern of sensitive data, resulting in the misuse of unauthorized users. Hence it is essential to encrypt sensitive data before outsourcing the data to the cloud. However, there has been little attention to efficient top-k processing on the encrypted cloud data. In this paper we propose a novel top-k processing algorithm that can efficiently process a large amount of encrypted data in the cloud. The main idea of the algorithm is to prune unpromising intermediate results at the early phase without decrypting the encrypted data by leveraging an order-preserving encrypted technique. Experiment results show that the proposed top-k processing algorithm significantly reduces the overhead of client systems from 10X to 10000X.

Survey on Top-k Query Processing Considering Attractive and Repulsive Dimensions (선호 차원과 배척 차원을 모두 고려한 top-k 질의 처리 연구 조사)

  • Lee, Juneyoung;Seo, In;Choi, Dong-june;Kim, Kyoungmin;Kim, Dongwon
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.804-807
    • /
    • 2017
  • Top-k 질의란 주어진 조건을 만족하면서 높은 점수를 가진 상위 k개의 레코드를 요청하는 질의이다. 개체의 점수를 계산하는 랭킹함수가 단조함수가 아닐 경우 발생하는 기술적 어려움을 해결하기 위한 여러 연구가 있었다. 본 논문에서는 이들 중 각 차원이 선호 차원과 배척 차원으로 나뉘는 비단조 랭킹함수를 효율적으로 처리하는 기존의 top-k 질의 처리 기법들을 소개하고 비교한다.

A Problem Analysis of Layer-based Methods using Convex Hulls (Convex hull 을 사용하는 layer 기반 방법의 문제점 분석)

  • Lee, Ki-Eun;Park, Young-Ho
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.1240-1242
    • /
    • 2011
  • 인터넷의 발달로 데이터의 양이 기하급수적으로 증가함에 따라 대용량 데이터를 효율적으로 검색하는 top k 질의 처리의 중요성이 커지고 있다. top k 는 릴레이션에서 가장 높은 (또는 가장 낮은) 스코어를 가지는 k 개의 튜플을 반환하는 방법으로, 스코어는 사용자가 정의한 스코어링 함수를 통해 계산된다. 효율적인 top k 질의 처리를 위해서는 전체 데이터 집합 중 최소한의 서브집합만 읽어서 k 개의 결과를 구할 수 있어야 한다. 이를 위해 기존 연구들은 다양한 방법의 인덱스 생성방법을 제안했다. 본 논문에서는 그 중에서 convex hull 을 사용하여 layer list 를 생성하는 기존 연구를 조사하고 문제점을 도출한다. 기존 연구 문제점 분석은 향후 연구인 스카이라인을 사용하는 top k 질의 처리 연구의 기반이 될 것으로 예상한다.

An Efficient Processing Method of Top-k(g) Skyline Group Queries for Incomplete Data (불완전 데이터를 위한 효율적 Top-k(g) 스카이라인 그룹 질의 처리 기법)

  • Park, Mi-Ra;Min, Jun-Ki
    • The KIPS Transactions:PartD
    • /
    • v.17D no.1
    • /
    • pp.17-24
    • /
    • 2010
  • Recently, there has been growing interest in skyline queries. Most of works for skyline queries assume that the data do not have null value. However, when we input data through the Web or with other different tools, there exist incomplete data with null values. As a result, several skyline processing techniques for incomplete data have been proposed. However, available skyline query techniques for incomplete data do not consider the environments that coexist complete data and incomplete data since these techniques deal with the incomplete data only. In this paper, we propose a novel skyline group processing technique which evaluates skyline queries for the environments that coexist complete data and incomplete data. To do this, we introduce the top-k(g) skyline group query which searches g skyline groups with respect to the user's dimensional preference. In our experimental study, we show efficiency of our proposed technique.