• Title/Summary/Keyword: Top-coupling method

Search Result 37, Processing Time 0.027 seconds

Implementation of the Electric Cauterizer with the Hole for Acupuncture (유침 구멍이 구비된 전기뜸기의 구현)

  • Jo, Bongkwan;He, Yunsheng
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.18 no.3
    • /
    • pp.217-223
    • /
    • 2014
  • Objectives This study is on the implementation of the electric cauterizer with the hole for acupuncture to achieve the superposition effect of acupuncture-moxibustion therapies. Methods In this paper, we especially made a hole across the heat terminal of the electric cauterizer for acupuncture. Before the cauterization, the doctor treats a patient with needle. And after acupuncture, the heat terminal is to be superposed upon the needle along the hole to add the cauterization. Results There are 2 coupling methods that the heat terminal is to be superposed with the needle; one is the top-coupling and the other is side-coupling. The top-coupling means that the heat terminal is to be superposed upon the needle along the top of the needle, and side-coupling means that the heat terminal is to be superposed to the needle along the side of the needle. Conclusion This study was aimed to implement the electric cauterizer with the hole for acupuncture to achieve the superposition effect of acupuncture-moxibustion therapies. Not electric acupuncture but manual acupuncture is adopted. The electric cauterizer generates the heat $38{\sim}45^{\circ}C$. This heat is safe for skin not to burn. The electric cauterizer constitutes the smokeless moxa- pad which effects the skin DDS.

Structural analysis and drive simulation of the top spindle, end coupling and slipper metal which is an important component of hot rolling process (열간압연공정의 주요구성품인 Top Spindle, End Coupling and Slipper Metal의 구조해석 및 구동시뮬레이션)

  • Byun S.W.;Lee Y.S.;Lee H.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.674-680
    • /
    • 2005
  • The top spindle, end coupling and slipper metal are important components of the hot rolling process and are used for transmission of heavy rotational power. In this study, kinematic analysis is conducted using finite element method for hot rolling process under slipper metal combination types and operation situations. The structural analysis is performed by applying the combination type, rotational boundary condition of top spindle, end coupling and slipper metal. This study aims to minimize the mechanical problems which might happen in the production process.

  • PDF

Calculation of the coupling coefficient for trapezoidal gratings using the ray optics technique (기하광학 방법을 이용한 사다리꼴 회절격자의 결합계수 계산)

  • 조성찬;김부균
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.97-104
    • /
    • 1997
  • Using the ray optics technique, we derive the analytic expressions of TE mode coupling coefficient for five-layer distributed feedback (DFB) structure devices. We compare the coupling coefficient calculated by the ray optics technique with those calulated by the extended additional layer method (EALM) which may be a most accurate method of calculating the coupling coefficient. The difference between the results of the ray optics technique and those of the EALM is small for most cases of grating depth and forms being practically made. In the case of rectangular gratings, the difference increases as the duty cycle of graing deviates from 0.5. In the case of the trapezoidal grating, the difference increases as the ratio of the top to the period of grating deviates from 0.5 and as the length of the top becomes longer than that of the base. The difference of theree-layer DFB structures is smaller than that of five-layer DFB structures.

  • PDF

Personal Recognition Method using Coupling Image of ECG Signal (심전도 신호의 커플링 이미지를 이용한 개인 인식 방법)

  • Kim, Jin Su;Kim, Sung Huck;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.8 no.3
    • /
    • pp.62-69
    • /
    • 2019
  • Electrocardiogram (ECG) signals cannot be counterfeited and can easily acquire signals from both wrists. In this paper, we propose a method of generating a coupling image using direction information of ECG signals as well as its usage in a personal recognition method. The proposed coupling image is generated by using forward ECG signal and rotated inverse ECG signal based on R-peak, and the generated coupling image shows a unique pattern and brightness. In addition, R-peak data is increased through the ECG signal calculation of the same beat, and it is thus possible to improve the recognition performance of the individual. The generated coupling image extracts characteristics of pattern and brightness by using the proposed convolutional neural network and reduces data size by using multiple pooling layers to improve network speed. The experiment uses public ECG data of 47 people and conducts comparative experiments using five networks with top 5 performance data among the public and the proposed networks. Experimental results show that the recognition performance of the proposed network is the highest with 99.28%, confirming potential of the personal recognition.

Investigation of Electrical Coupling Effect by Random Dopant Fluctuation of Monolithic 3D Inverter (Monolithic 3D Inverter의 RDF에 의한 전기적 커플링 영향 조사)

  • Lee, Geun Jae;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.481-482
    • /
    • 2022
  • In this paper, effect of random dopant fluctuation (RDF) of the top-transistor in a monolithic 3D inverter composed of MOSFET transistors is investigated with 3D TCAD simulation when the gate voltage of the bottom-transistor is changed. The sampling for investigating RDF effect was conducted through the kinetic monte carlo method, and the RDF effect on the threshold voltage variation in the top-transistor was investigated, and the electrical coupling between top-transistors and bottom-transistors was investigated.

  • PDF

A Simplified Seismic Design Method of Precast Coupled Shear Wall (프리캐스트 병렬 전단벽의 내진 설계에 관한 연구)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.65-74
    • /
    • 1998
  • In seismic design procedure of precast concrete structure, it is important to assign ductility requirement on the connection element for a favorable failure mechanism. The purpose of this paper is to propose a simplified procedure to determine the required ductility of coupling beam in coupled precast shear wall for a lateral displacement ductility at the top of a structure. This study shows that an equation for ductility of cloupling beam is introduced on the basis of several basic assumption.

  • PDF

Electromagnetic Field Coupling of Small Metallic Cans in Mobile Devices (모바일 기기용 소형 금속 캔의 전자기장 결합 특성)

  • Park, Hyun Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.916-919
    • /
    • 2017
  • This paper examines electromagnetic leakage path of small shield cans employed in mobile devices such as smart-phones by using numerical simulation and analyzes near-field coupling due to each of the leakage electric and magnetic fields by using IC-stripline method. From the results, it is confirmed that the leakage from the apertures or slots on the top of shield can is dominated by magnetic field, whereas the leakage from the seam on the side of shield can is mostly caused by electric field.

Analysis of flow in a square cavity with an oscillating top wall (진동하는 윗벽면을 가진 정방형 웅덩이 안에서의 흐름)

  • Min, Byeong-Gwang;Jang, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.392-404
    • /
    • 1997
  • The flow induced by the oscillatory motion of a solid body is important in a number of practical problems. As the solid boundary oscillates harmonically, there is steady streaming motion invoked by the Reynolds stresses, which could cause extensive migration of the fluid during a period of fluid motion. We here analyzed the flow in a square cavity with an oscillating top wall for the parameters which make the time derivatives and the convective terms equally important in the entire cavity flow. The full Navier-Stokes equations are solved by the second-order time accurate Momentum Coupling Method which is devised by the authors. The particular numerical scheme does not need subiteration at each time step which is usually a required process to calculate the incompressible Navier-Stokes equations. The effect of two parameters, the Reynolds number and the frequency parameter, on the oscillatory flow has been investigated.

Fluid-structure coupling of concentric double FGM shells with different lengths

  • Moshkelgosha, Ehsan;Askari, Ehsan;Jeong, Kyeong-Hoon;Shafiee, Ali Akbar
    • Structural Engineering and Mechanics
    • /
    • v.61 no.2
    • /
    • pp.231-244
    • /
    • 2017
  • The aim of this study is to develop a semi-analytical method to investigate fluid-structure coupling of concentric double shells with different lengths and elastic behaviours. Co-axial shells constitute a cylindrical circular container and a baffle submerged inside the stored fluid. The container shell is made of functionally graded materials with mechanical properties changing through its thickness continuously. The baffle made of steel is fixed along its top edge and submerged inside fluid such that its lower edge freely moves. The developed approach is verified using a commercial finite element computer code. Although the model is presented for a specific case in the present work, it can be generalized to investigate coupling of shell-plate structures via fluid. It is shown that the coupling between concentric shells occurs only when they vibrate in a same circumferential mode number, n. It is also revealed that the normalized vibration amplitude of the inner shell is about the same as that of the outer shell, for narrower radial gaps. Moreover, the natural frequencies of the fluid-coupled system gradually decrease and converge to the certain values as the gradient index increases.

Exchange coupling of Co/NiMn bilayer (Co/NiMn의 교환 자기결합에 관한 연구)

  • 안동환;조권구;주승기
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.4
    • /
    • pp.171-177
    • /
    • 2000
  • Exchange coupling of Co/NiMn bilayers fabricated by RF magnetron sputtering method was studied. We investigated the variation of exchange coupling field (H$\sub$ex/) for different annealing temperature and time. The maximum exchange coupling field was obtained after 13hr annealing at 300 $^{\circ}C$. With respect to deposition sequence, it was demonstrated that NiMn-top bilayers had higher exchange coupling field than NiMn-bottom bilayers. Ta capping layer was shown to be essential in achieving exchange coupling and Auger Electron Spectroscopy (AES) proved that uncapped NiMn/Co bilayers did not have exchange coupling because of oxygen incorporation into film. We also observed the effect of Ta underlayer on exchange coupling. It was found that Ta underlayer had better not be used for attaining higher exchange coupling. XRD analysis showed that Ta underlayer helped bilayers develop texture, but it was not essential to exchange coupling of Co/NiMn bilayers, which is in contrast to NiFe/NiMn system. Furthermore, the NiMn and Co thickness dependence of exchange coupling has been investigated. The exchange coupling strength reached the maximum above 200 ${\AA}$ NiMn thickness and had inversely proportional relation with Co thickness.

  • PDF