• Title/Summary/Keyword: Top-N 추천

Search Result 33, Processing Time 0.027 seconds

Associated Keyword Recommendation System for Keyword-based Blog Marketing (키워드 기반 블로그 마케팅을 위한 연관 키워드 추천 시스템)

  • Choi, Sung-Ja;Son, Min-Young;Kim, Young-Hak
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.246-251
    • /
    • 2016
  • Recently, the influence of SNS and online media is rapidly growing with a consequent increase in the interest of marketing using these tools. Blog marketing can increase the ripple effect and information delivery in marketing at low cost by prioritizing keyword search results of influential portal sites. However, because of the tough competition to gain top ranking of search results of specific keywords, long-term and proactive efforts are needed. Therefore, we propose a new method that recommends associated keyword groups with the possibility of higher exposure of the blog. The proposed method first collects the documents of blog including search results of target keyword, and extracts and filters keyword with higher association considering the frequency and location information of the word. Next, each associated keyword is compared to target keyword, and then associated keyword group with the possibility of higher exposure is recommended considering the information such as their association, search amount of associated keyword per month, the number of blogs including in search result, and average writhing date of blogs. The experiment result shows that the proposed method recommends keyword group with higher association.

A CF-based Health Functional Recommender System using Extended User Similarity Measure (확장된 사용자 유사도를 이용한 CF-기반 건강기능식품 추천 시스템)

  • Sein Hong;Euiju Jeong;Jaekyeong Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.1-17
    • /
    • 2023
  • With the recent rapid development of ICT(Information and Communication Technology) and the popularization of digital devices, the size of the online market continues to grow. As a result, we live in a flood of information. Thus, customers are facing information overload problems that require a lot of time and money to select products. Therefore, a personalized recommender system has become an essential methodology to address such issues. Collaborative Filtering(CF) is the most widely used recommender system. Traditional recommender systems mainly utilize quantitative data such as rating values, resulting in poor recommendation accuracy. Quantitative data cannot fully reflect the user's preference. To solve such a problem, studies that reflect qualitative data, such as review contents, are being actively conducted these days. To quantify user review contents, text mining was used in this study. The general CF consists of the following three steps: user-item matrix generation, Top-N neighborhood group search, and Top-K recommendation list generation. In this study, we propose a recommendation algorithm that applies an extended similarity measure, which utilize quantified review contents in addition to user rating values. After calculating review similarity by applying TF-IDF, Word2Vec, and Doc2Vec techniques to review content, extended similarity is created by combining user rating similarity and quantified review contents. To verify this, we used user ratings and review data from the e-commerce site Amazon's "Health and Personal Care". The proposed recommendation model using extended similarity measure showed superior performance to the traditional recommendation model using only user rating value-based similarity measure. In addition, among the various text mining techniques, the similarity obtained using the TF-IDF technique showed the best performance when used in the neighbor group search and recommendation list generation step.

Examining Factors Affecting the Binge-Watching Behaviors of OTT Services (OTT(Over-the-Top) 서비스의 몰아보기 시청행위 영향 요인 탐색)

  • Hwang, Kyung-Ho;Kim, Kyung-Ae
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.3
    • /
    • pp.181-186
    • /
    • 2020
  • The purpose of this study is to empirically examine the factors affecting the binge-watching behaviors of OTT service users by using a multi-layer perceptron (MLP) artificial neural network. All samples (n=1,000) were collected from 'A survey on user awareness in OTT service' published by a Media Research Center of the Korea Press Foundation in 2018. Our research model includes one dependent variable which is binge-watching behaviors on OTT service and five independent variables such as gender, age, frequency of service usage, users' satisfaction with content recommendation algorithm, and content types mainly consumed. Our findings demonstrate that age, frequency of service usage, users' satisfaction with content recommendation algorithms, and certain types of contents (e.g., Korean dramas, Korean films, and foreign dramas) were found to be highly related to binge-watching behavior on OTT services.

Estimation for N Fertilizer Application Rate and Rice (Oriza sativa L.) Biomass by Ground-based Remote Sensors (지상원격탐사 센서를 활용한 벼의 질소시비수준 및 생체량 추정)

  • Shim, Jae-Sig;Lee, Joeng-Hwan;Shin, Su-Jung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.749-759
    • /
    • 2012
  • A field experiment was conducted to selection of ground-based remote sensor and reflectance indices to estimate rice production, estimation of suitable season for ground-based remote sensor and N top dressing fertilizer application rate in 2010. Fertilizer application was determined by "Fertilizer management standard for crops" (National Academy of Agricultural Science, 2006). Four levels of N-fertilizer were applied as 0%, 70%, 100% and 130% by base N-fertilizer application and were fertilized as 70% of basal dressing and 30% as top dressing. Rice (Oryza sativa L.) of Chucheong and Joonam (Korean cultivar) were planted on May 22, 2010 in sandy loam soil and harvested on October 6, 2010. Reflectance indices were measured 7 times from July 5 to August 23 by Crop circle-amber and red version and GreenSeeker-green and red version. Remote sensing angle from the sensor head to the canopy of rice was adjusted to $45^{\circ}$, $70^{\circ}$ and $90^{\circ}$ degree because of difference in the density of plant and the sensing angle. The reflectance indices obtained ground-based remote sensor were correlated with the biomass of rice at the early growth stage and at the harvest with $70^{\circ}$ and $90^{\circ}$ degree of sensor angle. The reflectance indices at the 52th Day After Transplanting (DAT) and the 59th DAT, critical season, were positively correlated with dry weight and nitrogen uptake. Specially NDVI at the 59th was significantly correlated with the mentioned parameters. Based on the result of this study, rNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Chucheong and rNDVI by Crop Circle on $70^{\circ}$ degree of angle and gNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Joonam can be useful for estimation of dry weight and nitrogen uptake. Moreover, sufficiency index estimated by reflectance index at the 59th DAT can be useful for the estimation of N-fertilizer level application and can be used as a model for N-top dressing fertilizer management.

Deep Neural Network-Based Beauty Product Recommender (심층신경망 기반의 뷰티제품 추천시스템)

  • Song, Hee Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.26 no.6
    • /
    • pp.89-101
    • /
    • 2019
  • Many researchers have been focused on designing beauty product recommendation system for a long time because of increased need of customers for personalized and customized recommendation in beauty product domain. In addition, as the application of the deep neural network technique becomes active recently, various collaborative filtering techniques based on the deep neural network have been introduced. In this context, this study proposes a deep neural network model suitable for beauty product recommendation by applying Neural Collaborative Filtering and Generalized Matrix Factorization (NCF + GMF) to beauty product recommendation. This study also provides an implementation of web API system to commercialize the proposed recommendation model. The overall performance of the NCF + GMF model was the best when the beauty product recommendation problem was defined as the estimation rating score problem and the binary classification problem. The NCF + GMF model showed also high performance in the top N recommendation.

가상 커뮤니티 공간에서 블로거를 위한 추천시스템

  • Kim, Jae-Gyeong;O, Hyeok;An, Do-Hyeon
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.415-424
    • /
    • 2005
  • The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. Therefore, we propose a CF-based recommender system for bloggers in the virtual community space. Our proposed methodology consists of three main phases: In the first phase, we apply the "Interest Value" to a recommender system. The Interest Value is a quantity value about user preference in virtual community, and can measure the opinion of users accurately. Next phase, we generate the neighborhood group based on the Interest Value. In the final phase, we use the Community Likeness Score (CLS) to generate the top-n recommendation list. The methodology is explained step by step with an illustrative example and is verified with real data of a blog service provider.

  • PDF

Implementation of a Recommendation system using the advanced deep reinforcement learning method (고급 심층 강화학습 기법을 이용한 추천 시스템 구현)

  • Sony Peng;Sophort Siet;Sadriddinov Ilkhomjon;DaeYoung, Kim;Doo-Soon Park
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.406-409
    • /
    • 2023
  • With the explosion of information, recommendation algorithms are becoming increasingly important in providing people with appropriate content, enhancing their online experience. In this paper, we propose a recommender system using advanced deep reinforcement learning(DRL) techniques. This method is more adaptive and integrative than traditional methods. We selected the MovieLens dataset and employed the precision metric to assess the effectiveness of our algorithm. The result of our implementation outperforms other baseline techniques, delivering better results for Top-N item recommendations.

A Match-Making System Considering Symmetrical Preferences of Matching Partners (상호 대칭적 만족성을 고려한 온라인 데이트시스템)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.2
    • /
    • pp.177-192
    • /
    • 2012
  • This is a study of match-making systems that considers the mutual satisfaction of matching partners. Recently, recommendation systems have been applied to people recommendation, such as recommending new friends, employees, or dating partners. One of the prominent domain areas is match-making systems that recommend suitable dating partners to customers. A match-making system, however, is different from a product recommender system. First, a match-making system needs to satisfy the recommended partners as well as the customer, whereas a product recommender system only needs to satisfy the customer. Second, match-making systems need to include as many participants in a matching pool as possible for their recommendation results, even with unpopular customers. In other words, recommendations should not be focused only on a limited number of popular people; unpopular people should also be listed on someone else's matching results. In product recommender systems, it is acceptable to recommend the same popular items to many customers, since these items can easily be additionally supplied. However, in match-making systems, there are only a few popular people, and they may become overburdened with too many recommendations. Also, a successful match could cause a customer to drop out of the matching pool. Thus, match-making systems should provide recommendation services equally to all customers without favoring popular customers. The suggested match-making system, called Mutually Beneficial Matching (MBM), considers the reciprocal satisfaction of both the customer and the matched partner and also considers the number of customers who are excluded in the matching. A brief outline of the MBM method is as follows: First, it collects a customer's profile information, his/her preferable dating partner's profile information and the weights that he/she considers important when selecting dating partners. Then, it calculates the preference score of a customer to certain potential dating partners on the basis of the difference between them. The preference score of a certain partner to a customer is also calculated in this way. After that, the mutual preference score is produced by the two preference values calculated in the previous step using the proposed formula in this study. The proposed formula reflects the symmetry of preferences as well as their quantities. Finally, the MBM method recommends the top N partners having high mutual preference scores to a customer. The prototype of the suggested MBM system is implemented by JAVA and applied to an artificial dataset that is based on real survey results from major match-making companies in Korea. The results of the MBM method are compared with those of the other two conventional methods: Preference-Based Matching (PBM), which only considers a customer's preferences, and Arithmetic Mean-Based Matching (AMM), which considers the preferences of both the customer and the partner (although it does not reflect their symmetry in the matching results). We perform the comparisons in terms of criteria such as average preference of the matching partners, average symmetry, and the number of people who are excluded from the matching results by changing the number of recommendations to 5, 10, 15, 20, and 25. The results show that in many cases, the suggested MBM method produces average preferences and symmetries that are significantly higher than those of the PBM and AMM methods. Moreover, in every case, MBM produces a smaller pool of excluded people than those of the PBM method.

Development and Preliminary Test of a Prototype Program to Recommend Nitrogen Topdressing Rate Using Color Digital Camera Image Analysis at Panicle Initiation Stage of Rice (디지털 카메라 칼라영상 분석을 이용한 벼 질소 수비량 추천 원시 프로그램의 개발과 예비 적용성 검토)

  • Chi, Jeong-Hyun;Lee, Jae-Hong;Choi, Byoung-Rourl;Han, Sang-Wook;Kim, Soon-Jae;Park, Kyeong-Yeol;Lee, Kyu-Jong;Lee, Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.312-318
    • /
    • 2010
  • This study was carried out to develop and test a prototype program that recommends the nitrogen topdressing rate using the color digital camera image taken from rice field at panicle initiation stage (PIS). This program comprises four models to estimate shoot N content (PNup) by color digital image analysis, shoot N accumulation from PIS to maturity (PHNup), yield, and protein content of rice. The models were formulated using data set from N rate experiments in 2008. PNup was found to be estimated by non-linear regression model using canopy cover and normalized green values calculated from color digital image analysis as predictor variables. PHNup could be predicted by quadratic regression model from PNup and N fertilization rate at panicle initiation stage with $R^2$ of 0.923. Yield and protein content of rice could also be predicted by quadratic regression models using PNup and PHNup as predictor variables with $R^2$ of 0.859 and 0.804, respectively. The performance of the program integrating the above models to recommend N topdressing rate at PIS was field-tested in 2009. N topdressing rate prescribed for the target protein content of 6.0% by the program were lower by about 30% compared to the fixed rate of 30% that is recommended conventionally as the split application rate of N fertilizer at PIS, while rice yield in the plots top-dressed with the prescribed N rate were not different from those of the plots top-dressed with the fixed N rates of 30% and showed a little lower or similar protein content of rice as well. And coefficients of variation in rice yield and quality parameters were reduced substantially by the prescribed N topdressing. These results indicate that the N rate recommendation using the analysis of color digital camera image is promising to be applied for precise management of N fertilization. However, for the universal and practical application the component models of the program are needed to be improved so as to be applicable to the diverse edaphic and climatic condition.

Recommendation of the Amount of Nitrogen Top Dressing based on Soil Nitrate Nitrogen Content for Leaf Perilla (Perilla frutescens) under the Plastic Film House (토양 질산태질소 함량에 따른 시설 잎들깨 질소 웃거름시비량 추천)

  • Kang, Seong-Soo;Lee, Ju-Young;Sung, Jwa-Kyung;Gong, Hyo-Young;Jung, Hyung-Jin;Park, Chang-Hwan;Yun, Yeo-Uk;Kim, Myung-Sook;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1112-1117
    • /
    • 2011
  • This study was conducted to recommend nitrogen (N) top dressing based on soil nitrate content for leaf perilla under forcing culture in Gumsan-gun and Milyang-si. Experimental design was the randomized complete block design for five N fertilization levels and conventional fertilization. Dry weight, nitrogen uptake, and the node number of leaf perilla were measured and soil nitrate contents were analyzed monthly. The amount of nitrogen uptake for growth of a node with two leaves was $2.2kg\;10a^{-1}$ for Gumsan site and $3.5kg\;10a^{-1}$ for Milyang site. Lower level of soil nitrate N concentration for standard N fertilization was determined as $10mg\;kg^{-1}$ for both sites. Soil depth, bulk density, utilization rate of soil nitrate N, and the amount of N uptake for growth of a node with two leaves were considered for calculation of upper level of soil nitrate N concentration. The upper levels of soil nitrate N concentration for no N fertilization were determined as $30mg\;kg^{-1}$ for Gumsan site and as $40mg\;kg^{-1}$ for Milyang site. Consequently the recommendation equations for the N top dressing were Y=-0.157X+4.71 for Gumsan site and Y=-0.1667X+6.6667 for Milyang site.