• 제목/요약/키워드: Top electrodes

검색결과 182건 처리시간 0.024초

Air-Gap Type TFBAR Ladder Filters for Wireless Applications

  • Kim, Kun-Wook;Goo, Myeong-Gweon;Yook, Jong-Gwan;Park, Han-Kyu
    • Journal of electromagnetic engineering and science
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 2002
  • TFBAR filters for wireless applications are simulated and fabricated. A CAD model is used to analize the air-gap type single resonator and MBVD model is used far filter design. Aluminum nitride is used as the piezoelectric material with platinum electrodes. To verier the CAD model, simulated and measured results are compared far various top electrode thicknesses, and the agreement is within 0.5 % for the parallel resonance frequency. Various types of the ladder type band pass filters are predicted and their responses are compared with measured frequency data.

INVESTIGATIONS OF CONDUCTION MECHANISM OF ORGANIC MOLECULES USED AS BUFFER HOLE INJECTING LAYER IN OLEDS

  • Shekar, B. Chandar;Rhee, Shi-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2003년도 International Meeting on Information Display
    • /
    • pp.966-969
    • /
    • 2003
  • Thin film capacitors with Al-Polymer-Al sandwich structure were fabricated. The bottom and top aluminium (Al) electrodes were deposited by vacuum evaporation and copper phthalocyanine (CuPc), polyaniline-emeraldine base (Pani-EB) and cobalt phthalocyanine/polyaniline - emeraldine base (CoPc /Pani-EB) blend films (which can be used as buffer hole injection layer in OLEDs) were deposited by spin coating technique. X-ray diffractograms indicated amorphous nature of the polymer films whose thicknesses were measured by capacitance and Rutherford Backscattering Spectrometry (RBS) methods. AC conduction studies revealed that the conduction mechanism responsible in these films is variable range hopping of polarons. From D.C conduction studies, it is observed that, the nature of conduction is ohmic in the lower fields and at higher fields the dominating D.C conduction is of Poole-Frenkel type.

  • PDF

NaOH 수용액에 있어서 전기화화적 방전가공법에 의한 유리기판의 미세가공 (Microdrilling of Glass Substrates by Electrochmical Discarge Machining in NaOH Solutions)

  • 홍석우;제우성;최영규;정귀상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1500-1502
    • /
    • 1998
  • Electro Discharge Machining (EDM) is a so-call nonconventional machining technique. This paper presents the experimental results of an EDM technique for the fabircation of microholes on #7440 pyrex glass substrates. With various applied voltages and various concentration of NaOH or KOH solution, the glass substrates have been microdrilled using the copper electrodes of which diameters are 250 ${\mu}m$ to 450 ${\mu}m$. The machined throughholes have been observed the top diameter, the bottom diameter and machining time have been measured. EDM in NaOH solution causes the fabrication to have better the surface condition, higher selective of electrode, lower concentration of solution with respect to EDM in KOH solution machined fabrication.

  • PDF

CuPc를 이용한 전계효과트랜지스터의 전기적 특성 (Electrical Properties of CuPc Field-effect Transistor)

  • 이호식;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.410-411
    • /
    • 2008
  • Organic field-effect transistors (OFETs) are of interest for use in widely area electronic applications. We fabricated a copper phthalocyanine (CuPc) based field-effect transistor with different metal electrode. The CuPc FET device was made a top-contact type and the substrate temperature was room temperature. The source and drain electrodes were used an Au and Al materials. The CuPc thickness was 40nm, and the channel length was $50{\mu}m$, channel width was 3mm. We observed a typical current-voltage (I-V) characteristics in CuPc FET with different electrode materials.

  • PDF

Small Molecular Organic Nonvolatile Memory Cells Fabricated with in Situ O2 Plasma Oxidation

  • Seo, Sung-Ho;Nam, Woo-Sik;Park, Jea-Gun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제8권1호
    • /
    • pp.40-45
    • /
    • 2008
  • We developed small molecular organic nonvolatile $4F^2$ memory cells using metal layer evaporation followed by $O_2$ plasma oxidation. Our memory cells sandwich an upper ${\alpha}$-NPD layer, Al nanocrystals surrounded by $Al_2O_3$, and a bottom ${\alpha}$-NPD layer between top and bottom electrodes. Their nonvolatile memory characteristics are excellent: the $V_{th},\;V_p$ (program), $V_e$ (erase), memory margin ($I_{on}/I_{off}$), data retention time, and erase and program endurance were 2.6 V, 5.3 V, 8.5 V, ${\approx}1.5{\times}10^2,\;1{\times}10^5s$, and $1{\times}10^3$ cycles, respectively. They also demonstrated symmetrical current versus voltage characteristics and a reversible erase and program process, indicating potential for terabit-level nonvolatile memory.

박막공진 여파기에 대한 기판위에서의 튜닝 (On-wafer Tuning of the TFBAR Ladder Filters)

  • 김종수;김건욱;구명권;육종관;박한규
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2002년도 종합학술발표회 논문집 Vol.12 No.1
    • /
    • pp.3-6
    • /
    • 2002
  • In this paper, Thin film bulk acoustic resonate.(TFBAR) fillers tuned by gold plated on-wafer inductors are presented. The air-gap type TEBAR is used with aluminum nitride(AIN) as piezoelectric material and platinum as top and bottom electrodes. Inductor equivalent model and modified Butterworth-Van Dyke(MBVD) model are employed for the frequency tuning of fabricated TFBAR bandpass filters. Fabricated inductor has inductance of 3 nH and Q factor of about 8 at 2 ㎓. It is clearly revealed that inductor tuning can enhance the bandwidth of ladder filters and improve out-of-band rejection characteristic around 10㏈.

  • PDF

삼차원 마이크로 채널 내 카오스 혼합 (CHAOTIC MIXING IN THREE-DIMENSIONAL MICRO CHANNEL)

  • 레뛰홍반;강상모;서용권;왕양양
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.49-55
    • /
    • 2007
  • The quality of chaotic mixing in three-dimensional micro channel flow has been numerically studied using Fractional-step method (FSM) and particle tracking techniques such as $Poincar{\acute{e}}$ section and Lyapunov exponents. The flow was driven by pressure distribution and the chaotic mixing was generated by applying alternating current to electrodes embedded on the bottom wall at a first half period and on the top wall at a second half period. The equations governing the velocity and concentration distributions were solved using FSM based on Finite Volume approach. Results showed that the mixing quality depended significantly on the modulation period. The modulation period for the best mixing performance was determined based on the mixing index for various initial conditions of concentration distribution. The optimal values of modulation period obtained by the particle tracking techniques were compared with those from the solution of concentration distribution equation using FSM and CFX software and the comparison showed their good match.

  • PDF

Fabrication and characteristics of ITO thin films on CR39 substrate for transparent OTFT

  • Kwon, Sung-Yeol
    • 센서학회지
    • /
    • 제16권3호
    • /
    • pp.229-233
    • /
    • 2007
  • The indium tin oxide (ITO) films were deposited on CR39 substrate using DC magnetron sputtering. The ITO thin films deposited at room temperature because CR39 substrate its glass-transition temperature is $130^{\circ}C$. The ITO thin films used bottom and top electrode and for organic thin film transparent transistors (OTFTs). The ITO thin film electrodes electrical properties and optical transparency properties in the visible wavelength range (300-800 nm) strongly dependent on volume of oxygen percent. For the optimum resistivity and transparency of the ITO thin film electrode achieved with a 75 W plasma power, 10 % volume of oxygen and a 27 nm/min deposition rate. Above 85 % transparency in the visible wavelength range (300-800 nm) measured without post annealing process and a low resistivity value $9.83{\times}10^{-4}{\Omega}cm$ was measured thickness of 300 nm. All fabrication process of ITO thin films did not exceed $80^{\circ}C$.

Dielectrophoretic Alignment and Pearl Chain Formation of Single-Walled Carbon Nanotubes in Deuterium Oxide Solution

  • Lee, Dong Su;Park, Yung Woo
    • Carbon letters
    • /
    • 제13권4호
    • /
    • pp.248-253
    • /
    • 2012
  • Dielectrophoretic filtering and alignment of single-walled carbon nanotubes (SWCNTs) were tested using deuterium oxide as a solvent. A solution of deuterium oxide-SWCNTs was dropped on top of a silicon chip and an ac electric field was applied between pre-defined electrodes. Deuterium oxide was found to be a better solvent than hydrogen oxide for the dielectrophoresis process with higher efficiency of filtering. This was demonstrated by comparing Raman spectra measured on the initial solution with those measured on the filtered solution. We found that the aligned nanotubes along the electric field were not deposited on the substrate but suspended in solution, forming chain-like structures along the field lines. This so-called pearl chain formation of CNTs was verified by electrical measurements through the aligned tubes. The solution was frozen in liquid nitrogen prior to the electrical measurements to maintain the chain formation. The current-voltage characteristics for the sample demonstrate the existence of conduction channels in the solution, which are associated with the SWCNT chain structures.

다중벽 탄소나노튜브 습도센서의 제작과 응답특성 (Fabrication and Response Characteristics of Multi-walled Carbon Nanotube Film Humidity Sensor)

  • 박찬원
    • 산업기술연구
    • /
    • 제34권
    • /
    • pp.39-43
    • /
    • 2014
  • This paper represents a highly porous MWCNT film electrode with interconnected open pores and demonstrated the possibility of using an MWCNT network film as the top electrode for polyimide capacitive humidity sensors. Polyimide humidity sensors with MWCNT electrodes exhibited about 6 times faster response than equivalent Cr electrode sensors. This result may be due to their percolated pore structures, which make water molecules accessible to all polyimide surfaces. The much faster response times of MWCNT electrode sensors is attributed to the percolated pore network, which allows more water molecules to be accessible to polyimide surfaces.

  • PDF