• Title/Summary/Keyword: Tooth demineralization

Search Result 54, Processing Time 0.027 seconds

EFFECT OF CARBON DIOXIDE LASER ON INHIBITION OF DEMINERALIZATION AND REHARDENING OF PRIMARY TEETH (이산화탄소 레이저의 유치 탈회억제 및 재경화 효과)

  • Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.2
    • /
    • pp.320-325
    • /
    • 2003
  • The purpose of study was to investigate the effect of carbon dioxide laser on demineralization inhibition and rehardening of primary tooth enamel according to its power and irradiation time. 2mm diameter circle on the primary enamel surface was irradiated by defocused $10.6{\mu}m$ superpulse carbon dioxide laser at 6 Watt 2 seconds or at 3 Watt 8 seconds, before or after demineralization by Coca-Cola for 24 hours. Enamel surface change was measured by the Diagnodent. The results were analyzed with the former study results of 3 Watt 4 seconds and 6 Watt and 4 seconds. Diagnodent scores increased significantly after demineralization of irradiated enamel at 6W 2s or 3W 8s (P<0.05). Among the four groups, only 6W 4s group showed obvious demineralization inhibition effect. Diagnodent scores reduced significantly after 6W 2s or 3W 8s irradiation of demineralized enamel(P<0.05). Among the four groups, 6W 4s showed nearly complete rehardening effect, and the other groups showed partial effect. Tooth discoloration only occurred at 6W 4s. It seemed that caries inhibition and tooth discoloration depend on laser power more than total irradiation energy.

  • PDF

Tooth Movement in Demineralized Area by Etchant in Rabbits

  • Choi, Bohm;Kim, Tae-Gun;Han, Seung-Hee;Park, Yoon-Hee;Lee, Won
    • Journal of Korean Dental Science
    • /
    • v.5 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Purpose: Among the facilitation of tooth movement in adult orthodontic treatment methods, surgical approaches are gaining popularity but complications following mechanical bone reduction are a problem. In this study, tooth movement was observed after alveolar bone was chemically demineralized to verify whether tooth movement had been facilitated. Materials and Methods: Twelve rabbits were used. In the experimental group, the alveolar bone of the left first molar area was exposed and demineralized. Thirty seven percents phosphoric acid was applied for 5 minutes for demineralization. The opposite first molar area was used as control. Two teeth were pulled with 200 g force and 4 rabbits each were sacrificed at 3, 7, and 14 days after the force was applied. Histologic examination was done with hematoxylin and eosin and tartrate-resistant acid phosphatase staining. Result: The histologic examination results revealed more bone resorption in the demineralized area. As time passed, the number of osteoclasts increased in the compressed area. The amount of tooth movement was larger in the experimental group compared to the control group but the difference was not statistically significant. Conclusion: The demineralization with etchant resulted in limited bone resorption, more tooth movement and less damage of the cementum after applied orthodontic force.

Effect of Commercial Effervescent Vitamin Tablets on Bovine Enamel

  • Jeong, Moon-Jin;Lee, Myoung-Hwa;Jeong, Soon-Jeong;Kim, So-Jeong;Ko, Myeong-Ji;Sim, Hye-Won;Lee, Ju-Young;Im, Ae-Jung;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.19 no.4
    • /
    • pp.261-270
    • /
    • 2019
  • Background: In this study, four types of effervescent vitamins marketed in Korea were analyzed for their acidity and vitamin content. For this purpose, bovine teeth were immersed in vitamin, and surface microhardness and appearance were measured before and after immersion to evaluate tooth demineralization and erosion. Methods: Bovine permanent incisors with sound surface enamel were cut to 5×5 mm size, embedded in acrylic resin, and polished using a polishing machine with Sic-paper. The prepared samples were analyzed for pH, vitamin content, and surface hardness before and after immersion using a surface microhardness meter. Demineralization of surface dental enamel was observed using a scanning electron microscope. Results: The average pH of the four effervescent vitamins was less than 5.5; the pH of the positive control Oronamin C was the lowest at 2.76, while that of the negative control Samdasoo was the highest at 6.86. The vitamin content was highest in Berocca and lowest in the DM company Multivitamin. On surface microhardness analysis, surface hardness values of all enamel samples were found to be decreased significantly after 1 and 10 minutes of immersion (p<0.05). After 10 minutes of immersion, there was a significant difference in the decrease in hardness between the experimental groups (p<0.05). Scanning electron microscopy observation showed that dental enamel demineralization after 10 minutes of immersion was the most severe in Oronamin C except for Samdasoo, followed by DM company Multivitamin and VitaHEIM. Immersion in BeroNew and Berocca resulted in similar effects. Conclusion: There is a risk of tooth erosion due to decreased tooth surface microhardness when using the four types of effervescent vitamins and vitamin carbonated beverages with pH below 5.5. Therefore, high pH vitamin supplements are recommended to prevent tooth erosion.

A QUANTITATIVE STUDY OF THE CHANCE OF CALCIUM, PHOSPHATE, FLUORIDE USING EPMA AFTER IN VITRO DEMINERALIZATION AND REMINERALIZATION OF HUMAN TOOTH ENAMEL (법랑질 표면의 탈회 및 재광화 후 EPMA (electron probe micro-analysis)를 이용한 칼슘, 인, 불소 변화의 정량적 분석)

  • Hong, Kyoung-Sik;Hur, Bock;Lee, Chan-Young;Keum, Ki-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.26 no.5
    • /
    • pp.372-378
    • /
    • 2001
  • The aim of this in vitro study was to analyze the composition of human tooth enamel in terms of three components, Ca, P, and F after demineralization and remineralization in acid buffer solution. A total of 8 human premolars without any defects and cracks were selected and buccal and lingual sides of the teeth were cleaned with an ultrasonic device and pumice without fluoride 5$\times$5mm windows were opened, and other areas were completely covered with 3-coats of nail varnish to prevent from being in contact with demineralized and remineralized solutions. After demineralization process, each tooth was sectioned into two slices, highly polished one of them with$\gamma$-alumina, and then analyzed the composition of the demineralized tooth with EPMA(electron probe micro-analyzer). The other slices were put into the remineralized solution for 10 days, polished, and analyzed in the same manner. These data were statistically analyzed with one sample t-test(p<0.05). The results were as follows. 1. Normal tooth enamel consists of 49.76% Ca, 39.80% P, and 0.28% F. 2. After demineralization, percentage of Ca and P ratio were decreased by about 5.57 and 5.07% respectively. Percentage of F ratio was also decreased by about 0.01%, which was not statistically significant. 3. After remineralization, percentage of Ca, P increased about by 4.47 and 4.35% respectively Percentage of F decreased by about 0.01%, which was not statistically significant. In conclusion, remineralized solution used in our study has the potential to induce the uptake the Ca and P into the pore sites of the demineralized enamel. But, in the oral cavity. there were rapid temperature change, organic matrix that inhibits the movement of the ions, and limitation of continuous contact with this remineralized solution. Therefore, further in vivo study is necessary.

  • PDF

Comparison of Prevention Methods against Enamel Demineralization adjacent to Orthodontic Bracket Using Fluoride (교정용 브라켓 주위의 불소를 이용한 법랑질 탈회 예방 방법 비교)

  • Mo, Hyelim;Kim, Jongsoo;Oh, Sohee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.46 no.3
    • /
    • pp.293-300
    • /
    • 2019
  • As a common side effect of fixed orthodontic treatment, demineralization of the enamel adjacent to the bracket and band occurs in patients with poor oral hygiene. The purpose of this study was to investigate what is the most effective method to prevent demineralization around the fixed orthodontic appliance among various methods using fluoride. 80 extracted bovine incisors with a healthy surface were classified into four groups as experimental materials: (Group I) Control group, (Group II) V $varnish^{TM}$, (Group III) Tooth Mousse $Plus^{(R)}$, (Group IV) $Vanish^{TM}$ XT. After treatment for each group, mineral loss and Vickers surface microhardness were measured at 0, 30, 60 and 90 days after demineralization in artificial carious solution. Mineral loss was the lowest in group IV, followed by group II and group III, which showed a significant difference. The surface microhardness was the lowest in group IV, followed by group II and group III, which showed a significant difference. Through this study, group IV showed the best effect to prevent enamel demineralization around the bracket. Group III showed significant prevention of enamel demineralization compared with the control group, but the effect was less than that of the other groups.

An alternative treatment option for a bony defect from large odontoma using recycled demineralization at chairside

  • Lee, JuHyon;Lee, Eun-Young;Park, Eun-Jin;Kim, Eun-Suk
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.41 no.2
    • /
    • pp.109-115
    • /
    • 2015
  • Odontoma is the most common odontogenic benign tumor, and the treatment of choice is generally surgical removal. After excision, bone grafts may be necessary depending on the need for further treatment, or the size and location of the odontoma. Although the osteogenic capacity of a demineralized tooth was verified as early as 1967 by Urist and many other investigators, the cumbersome procedure, including a long demineralization time, may be less than comfortable for clinicians. A modified ultrasonic technology, with periodic negative pressure and temperature control, facilitated rapid and aseptic preparation of demineralized teeth for bone grafts. This approach reduces the demineralization time dramatically (${\leq}80$ minutes), so that the graft material can be prepared chairside on the same day as the extraction. The purpose of this article is to describe two cases of large compound odonotomas used as graft material prepared chairside for enucleation-induced bony defects. These two clinical cases showed favorable wound healing without complications, and good bony support for future dental implants or orthodontic treatment. Finally, this report will suggest the possibility of recycling the benign pathologic hard tissue as an alternative treatment option for conventional bone grafts in clinics.

Effect of $CO_2$ Laser on Caries Inhibition Evaluated by Laser Fluorescence Measurement (이산화탄소 레이저의 우식 억제 효과에 대한 레이저형광측정 평가)

  • Kim, Seong-Hyeong;Lee, Kwang-Hee;Kim, Dae-Eop;Lee, Ji-Young;Song, In-Kyung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.153-160
    • /
    • 2003
  • The purpose of study was to evaluate the effects of the $CO_2$ laser irradiation on demineralization inhibition and rehardening of human primary tooth enamel by laser fluoresecence measurement. Enamel specimens were made from the human primary teeth. The center spots of the specimens about 2 mm diameter were irradiated by $CO_2$ laser at the conditions of focused continuous or defocused pulsed, 3 or 6 W, for 4 seconds, before or after the demineralization by Coca-Cola for 24 hours at $37^{\circ}C$. The Diagnodent was used to measure the degree of demineralization and rehardening. There was no significant difference between focused continuous and defocused pulsed irradiation. 6W irradiation inhibited the demineralization but 3W did not. 6W irradiation rehardened the demineralized enamel but 3W did partially. The color of enamel was changed to brown to black after 6W irradiation but 3W caused no color change. $CO_2$ laser irradiation showed the effects on demineralization inhibition and rehardening of human priamary tooth enamel, and the laser fluoresecence measurement technique seemed to be a valid evaluation method.

  • PDF

EFFECTS OF AMYLASE ON THE DEMINERALIZATION IN HYDROXYAPATITE (Amylase가 Hydroxyapatite 탈회에 미치는 영향)

  • Lee, In-Hwan;Seo, Jeong-Taeg;Choi, Byung-Jai;Lee, Jong-Gap
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.2
    • /
    • pp.335-351
    • /
    • 1998
  • Salivary proteins which are produced in the saliary acinar cells have been known to be involved in the Calcium and phosphate metabolism. The acquired pellicle resulting from such metabolism is considered as a secondary defence membrane against tooth caries. In this respect, some proteins included in saliva probably play an important role in the prevention of demineralization in enamel. On the other hand, fluoride has long been known to prevent the demineralization of enamel by the inhibition of the growth of Streptococcus mutans(S. mutans) and by the chemical reaction with calcium and phosphate, Therefore, I have examined the roles of amylase and albumin in the demineralization of enamel and compared these preteins with fluoride in terms of anticariogenic effect. 1. The demineralization caused by S. mutans occurred slowly and progressively for the first 60 min, then the rate of demineralization was accelerated afterwards. 2. pH decreased continuously during the entire period of each experiment. 3. The demineralization was significantly inhibited by the preteatment of amylase and fluoride but albumin had little effect on it. 4. An addition of 0.1 mM lactic acid (final concentration 0.1 ${\mu}M$) caused a rapid increase in calcium concentration reaching a maximum within 10 min. 5. pH decreased rapidly by the addition of 0.1 mM lactic acid and reached a minimum within a few seconds followed by an increase in pH. pH reaced a plateu with 10 min. 6. Fluoride, amylase and albumin played little role in the 0.1 mM lactic acid-induced demineralization. 7. A slow infusion of 0.1 M lactic acid at a rate of 5 ${\mu}l/min$ caused a slower increase in calcium concentration compared with the bolus addition of lactic acid. 8. Fluoride had an inhibitory effect on the calcium release caused by slow infusion of lactic acid while amylase and albumin had no effect on it. These results suggest that fluoride inhibits demineralization by protecting the HA from the acid attack whereas amylase has a direct effect on S. mutans to prevent demineralization.

  • PDF

Effect of fluoride varnishes on the surface hardness of bovine teeth under demineralization/remineralization cycling

  • Son, Ju-Lee;Shin, Yoon-Jeong;Jeong, Geon-Hee;Choi, Shin-Jae;Oh, Seunghan;Bae, Ji-Myung
    • The Journal of the Korean dental association
    • /
    • v.58 no.6
    • /
    • pp.324-335
    • /
    • 2020
  • We investigated whether fluoride varnishes recover the hardness of bovine teeth under 20 days of demineralization/remineralization cycling. The fluoride varnish groups (two commercial fluoride varnishes [V-varnish (Vericom, Korea) and CavityShield (3M ESPE, USA)] and an experimental fluoride varnish including 5 wt.% NaF were compared with a control group without fluoride varnish. Vickers hardness was measured at baseline, 3 days after immersion in caries-inducing solution, 24 hours after application of a fluoride varnish, and after 10 and 20 days of demineralization/remineralization cycling. Afterward, tooth surfaces were observed by scanning electron microscope. After fluoride varnish application and the cycling 10 and 20 days, the experimental varnish group showed the highest hardness, while the CavityShield and the control groups demonstrated the lowest hardness. The experimental varnish group recovered the hardness of the baseline at 24 hours after application of the varnish, while it was recovered after 20 days of the cycling in case of the V-varnish. However, the CavityShield and the control groups did not recover the hardness even after 20 days of the cycling. The experimental fluoride varnish with fast recovery in the hardness of the baseline can be used as an effective fluoride varnish to resist demineralization and to facilitate remineralization.

  • PDF