• Title/Summary/Keyword: Tools Monitoring

Search Result 472, Processing Time 0.026 seconds

Personal digital assistants: Essential tools for preparing dietetics professionals to use new-generation information technology

  • Jang, Mi-Young;Song, Won-O.
    • Nutrition Research and Practice
    • /
    • v.1 no.1
    • /
    • pp.42-45
    • /
    • 2007
  • Rapid integration of information technology into health care systems has included the use of highly portable systems-in particular, personal digital assistants (PDAs). With their large built-in memories, fast processors, wireless connectivity, multimedia capacity, and large library of applications, PDAs have been widely adopted by physicians and nurses for patient tracking, disease management, medical references and drug information, enhancing quality of health care. Many health-related PDA applications are available to both dietetics professionals and clients. Dietetics professionals can effectively use PDAs for client tracking and support, accessing to hospital database or information, and providing better self-monitoring tools to clients. Internship programs for dietetics professionals should include training in the use of PDAs and their dietetics applications, so that new practitioners can stay abreast of this rapidly evolving technology. Several considerations to keep in mind in selecting a PDA and its applications are discussed.

Automated identification of the modal parameters of a cable-stayed bridge: Influence of the wind conditions

  • Magalhaes, Filipe;Cunha, Alvaro
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.431-444
    • /
    • 2016
  • This paper was written in the context of a benchmark study promoted by The Hong Kong Polytechnic University using data samples collected in an instrumented cable-stayed bridge. The main goal of the benchmark test was to study the identification of the bridge modes of vibration under different wind conditions. In this contribution, the tools developed at ViBest/FEUP for automated data processing of setups collected by dynamic monitoring systems are presented and applied to the data made available in the context of the benchmark study. The applied tools are based on parametric output only modal identification methods combined with clustering algorithms. The obtained results demonstrate that the proposed algorithms succeeded to automatically identify the modes with relevant contribution for the bridge response under different wind conditions.

Generation of Internet Server Profile Using Packet Mining (패킷 마이닝 기법을 사용한 인터넷 서버 프로파일의 자동생성 연구)

  • Kwak, Mi-Ra;Cho, Dong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.39-41
    • /
    • 2002
  • Management of internal Internet servers is increasingly becoming an important task. According to meet this requirement, they use service log analysis tools and network monitoring tools. But these are not enough to produce advanced management information considering contents of Internet services. Therefor we propose a system and let it detect Internet server systems existing in internal network and individuate those systems with providing profile. Internet server profile includes system's basic information, network traffic information, and Internet service usage information.

  • PDF

Development of GUI for Industrial Robot Systems

  • Lee, Seong-Ho;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.105-110
    • /
    • 1998
  • This paper proposes a graphical user interface for industrial robot systems. Previous user interfaces for industrial robot systems were based on the text. In order to enable operators to handle robots more efficiently, a set of graphical tools is provided. The graphical tools contain a control panel for operating robots and compiling robot programs, a graphical teaching panel for handling virtual robots and a graphical monitoring panel for checking robot status. Furthermore, the proposed GUI can be used to operate remote robots because it has network utilities. This system consists of the virtual mode and the real mode. The user can handle a 3D virtual solid model of the robot in the virtual mode and an actual robot in the real mode.

  • PDF

A Review of Organ Dose Calculation Tools for Patients Undergoing Computed Tomography Scans

  • Lee, Choonsik
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.151-159
    • /
    • 2021
  • Background: Computed tomography (CT) is one of the crucial diagnostic tools in modern medicine. However, careful monitoring of radiation dose for CT patients is essential since the procedure involves ionizing radiation, a known carcinogen. Materials and Methods: The most desirable CT dose descriptor for risk analysis is the organ absorbed dose. A variety of CT organ dose calculators currently available were reviewed in this article. Results and Discussion: Key common elements included in CT dose calculators were discussed and compared, such as computational human phantoms, CT scanner models, organ dose database, effective dose calculation methods, tube current modulation modeling, and user interface platforms. Conclusion: It is envisioned that more research needs to be conducted to more accurately map CT coverage on computational human phantoms, to automatically segment organs and tissues for patient-specific dose calculations, and to accurately estimate radiation dose in the cone beam computed tomography process during image-guided radiation therapy.

VIBRATIONAL SPECTROSCOPY IN INDUSTRIAL CHEMICAL QUALITY CONTROL

  • Siesler, H.W.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1081-1081
    • /
    • 2001
  • The constant need for quality improvement and production rationalization in the chemical and related industries has led to the increasing replacement of conservative control procedures by more specific and environmentally compatible analytical techniques. In this respect, vibrational spectroscopy has developed over the last yews - in combination with new instrumental accessories and statistical evaluation procedures - to one of the most important analytical tools for industrial chemical quality control and process monitoring in a wide field of applications. In the present communication this potential is demonstrated in order to further support the implementation of mid-infrared (MIR), near-infrared (NIR) and Raman spectroscopy Primarily as industrial on-line tools. To this end the data of selected feasibility studies will be discussed in terms of the individual strengths of the different techniques for the respective application.

  • PDF

DEVELOPMENT OF KAO SPACE WEATHER MONITORING SYSTEM: I. REAL-TIME DATA ACQUISITION TOOLS AND APPLICATIONS (한국천문연구원의 태양 및 우주환경 모니터링 시스템 개발: I. 실시간 자료취득과 응용)

  • Park, Hyung-Min;Moon, Yong-Jae;Cho, Kyung-Seok;Park, So-Young;Lee, Sang-Woo;Lee, Woo-Kyoung;Park, Young-Deuk;Kim, Yeon-Han
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.429-440
    • /
    • 2004
  • Recently, real time data acquisition become important for space weather forecast and research. In this work, we have developed the data acquisition tools and their applications for space weather monitoring. We have developed programs to download the space weather data using IDL as well as programs to interactively display the image and data using ION (IDL on the Net). By using these tools, we have constructed the mirror site of Active Region Monitor (ARM) which summarizes several different solar activities, and developed ION programs to display TEC(Total Electron Contents) maps from GPS data at the passage of Korean satellites. At present, the KAO ARM mirror site (http://sun.kao.re.kr/arm) is successfully updated in every thirty minutes. The TEC maps from GPS data are expected to be used for monitoring the space environment of Korean satellites.

Study on Establishment of the Greenhouse Environment Monitoring System for Crop Growth Monitoring (작물 생식 모니터링을 위한 온실환경 모니터링 시스템 구축연구)

  • Kim, Won-Kyung;Cho, Byeong-Hyo;Hong, Youngki;Choi, Won-Sik;Kim, Kyoung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2022
  • Currently, the agricultural population in Korea indicates a decreasing and aging orientation. As the population of farm labor continues to decline, so farmers are feeling the pressure to be stable crop production. To solve the problem caused by the decreasing of farm labor, it is necessary to change over to "Digital agriculture". Digital agriculture is tools that digitally collect, store, analyze, and share electronic data and/or information in agriculture, and aims to integrate the several digital technologies into crop and livestock management and other processes in agriculture fields. In addition, digital agriculture can offer the opportunity to increase crop production, save costs for farmer. Therefore, in this study, for data-based Digital Agriculture, a greenhouse environment monitoring system for crop growth monitoring based on Node-RED, which even beginners can use easily, was developed, and the implemented system was verified in a hydroponic greenhouse. Several sensors, such as temperature, humidity, atmospheric pressure, CO2, solar radiation, were used to obtain the environmental data of the greenhouse. And the environmental data were processed and visualized using Node-RED and MariaDB installed in rule.box digital. The environment monitoring system proposed in this study was installed in a hydroponic greenhouse and obtained the environmental data for almost two weeks. As a result, it was confirmed that all environmental data were obtained without data loss from sensors. In addition, the dashboard provides the names of installed sensors, real time environmental data, and changes in the last three days for each environmental data. Therefore, it is considered that farmers will be able to easily monitor the greenhouse environment using the developed system in this study.

Study of Continuous Monitoring for Underground and Geotechnical Structures using Accelerometers (가속도계를 활용한 지하 및 지반구조물 상시 계측 방안에 관한 연구)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.19-27
    • /
    • 2024
  • Geotechnical structures such as dams, tunnels, and slopes require regular inspection and monitoring to ensure stability. Domestically, drones and accelerometers have become common tools for inspecting and monitoring various structures. However, drones have difficulty identifying internal changes in structures and the subsurface, and accelerometers generally serve for seismic design or strain measurement purposes. Therefore, this paper proposes to utilize accelerometers to monitor the internal information of the ground on a real-time or periodic basis. The proposed method utilizes a part of the analysis technique from the SASW test to monitor the stability and state changes of geotechnical structures. Cases where SASW was used to evaluate the safety of geotechnical structures, such as slopes, dams, and tunnels, were reviewed to verify the suitability of the technology. To make the proposed method more practical, the study considered using only the first-step analysis to derive the dispersion curve rather than the second-step analysis to determine the shear wave velocity profile, which requires complex analysis. The proposed technique is expected to enable the continuous monitoring and inspection of geotechnical structures by utilizing accelerometers.

The estimation of tool wear and fracture mechanism using sensor fusion in micro-machining (미세형상가공시 센서융합을 이용한 공구 마멸 및 파손 메커니즘 검출)

  • 임정숙;왕덕현;김원일;이윤경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.245-250
    • /
    • 2002
  • A successful on-line monitoring system for conventional machining operations has the potential to reduce cost, guarantee consistency of product quality, improve productivity and provide a safer environment for the operator. In fee-shape machining, typical signs of tool problems such as vibration, noise, chip flow characteristics and visual signs are almost unnoticeable without the use of special equipment. These characteristics increase the importance of automatic monitoring in fine-shape machining; however, sensing and interpretation of signals are more complex. In addition, the shafts of the micro-tools break before the typical extensive cutting edge of the tool gets damaged. In this study, the existence of a relationship between the characteristics of the cutting force and tool usage was investigated, and tool breakage detection algorithm was developed and the fellowing results are obtained. In data analysis, didn't use a relative error compare which mainly used in established experiment and investigated tool breakage detection algorithm in time domain which can detect AE and cutting force signals more effective and accurate.

  • PDF