• 제목/요약/키워드: Tooling

검색결과 273건 처리시간 0.031초

쾌속금형제작을 위한 진공주형과 동용침 분말주조기술에 관한 연구 (Study on Vacuum Casting and Cu Infiltration Powder Casting for Rapid Tooling)

  • 임용관
    • 한국분말재료학회지
    • /
    • 제7권2호
    • /
    • pp.102-109
    • /
    • 2000
  • With the emergence of the 3D CAD, it is possible to create a physical part directly from a digital model by accumulating layers of a given material. The technology is being widely used for checking designs, to create master models for rapid tooling, and for reverse engineering. However, in general, a model created by rapid prototyping technology is made of soft material that cannot be used as mass prouduction hard tool. Newly developed powder casting is suitable for rapid-manufacturing metallic tools. Powder casting can serve as a promising rapid tooling method because of high density characteristics and low dimensional shrinkage below 0.1% during sintering and infiltration. Through this process, we have realized significant time and cost savings eliminating the expense of conventional prototype tooling process.

  • PDF

아크 용사를 이용한 쾌속 금형 제조 기술 (A study on rapid tooling technology using thermal spray process)

  • 김경하;김선경;유영은;제태진;최두선
    • Design & Manufacturing
    • /
    • 제2권2호
    • /
    • pp.20-24
    • /
    • 2008
  • Recently, the study for production technology is focused on cycle time reduction as various products are manufactured. In order to manufacture tool and die, rapid prototyping and rapid tooling are researched. Stereolithography apparatus, selective laser sintering, 3D printing, laminated object manufacturing are developed in rapid prototype. The purpose of this study is to develop rapid tooling technology using thermal spray process. This technology is not well-known to korea, but this study will be contributed in development of domestic molds industry through continuous research and development.

  • PDF

On the Solubility of Chromium in Cubic Carbides in WC-Co

  • Norgren, Susanne;Kusoffsky, Alexandra;Elfwing, Mattias;Eriksson, Anders
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.338-339
    • /
    • 2006
  • The solubility of Cr in cubic carbides in the systems WC-Co-TaC and WC-Co-ZrC has been determined using equilibrium samples. Thermodynamic calculations were used to design the alloys through extrapolations of Gibbs energy expressions. The alloys were designed to have a microstructure containing the following phases: WC, liquid, $M_7C_3$, graphite and cubic carbide. The alloys were investigated using scanning electron microscopy and analyzed using energy-dispersive X-ray spectrometry. The present work shows how the Cr solubility depends on which cubic carbide former that is present. The WC-Co-Cr-Zr alloy has no detectable amount of Cr whereas the WC-Co-Cr-Ta alloy has 12% Cr in the cubic carbide.

  • PDF

쾌속 금형 제작을 위한 텅스텐 카바이드와 코발트 혼합물의 선택적 레이저 소결 실험 (Experiments on Selective Laser Sintering of WC-Co Mixture for Rapid Metal Tooling)

  • 김광희;조셉비만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권6호
    • /
    • pp.661-669
    • /
    • 2002
  • Rapid tooling technique enables us to make dies and molds that produce prototype parts with the correct material at a substantially reduced cost and time. In this study, experiments on selective laser sintering of tungsten carbide-cobalt mixture were carried out to find optimal sintering conditions that will be applied to rapid metal tooling. The experiments were carried out within an air, an argon and a nitrogen atmosphere. Coupons of single layer were sintered at various laser powers, scanning speeds and scan spacings. Very severe oxidation took place within an air atmosphere. The oxidation is reduced significantly within an argon and a nitrogen atmosphere. The thickness of the sintered coupons is increased as the energy density, the laser energy Per unit scanned area, is increased. Several multi-layer sintering experiments were also carried out.

발포폴리스티렌 폼을 이용한 단속형 가변적층 쾌속조형공정과 응용기술을 이용한 3차원 기능성 제품 제작에 관한 연구 (Investigation Into the Manufacture of 3D Functional Parts using VLM-ST and Its Applied Technology)

  • 안동규;이상호;최홍석;김기돈;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2001
  • The integration of rapid prototyping and tooling has the potential for the rapid net shape manufacturing of three-dimensional parts with geometrical complexity. In this study, a new rapid prototyping process, transfer type of Variable Lamination Manufacturing (VLM-ST), was proposed to manufacture net shape of 3-D prototypes. In order to examine the efficiency and applicability of the proposed process, various 3-D parts, such as a world-cup logo, and extruded cross and a knob shape, were fabricated on the apparatus. In addition, the new rapid tooling process, which is a triple reverse process, was proposed to manufacture of 3-D functional part using VLM-ST prototypes and the plastic part of the knob shape was produced by the new rapid tooling process.

  • PDF

급속금형제작 (2) : 알루미늄 분말 혼합수지를 이용한 간이형 제작과 그 특성 (Rapid Tooling (2) : Al Powder Filled Resin Tooling and Its Characteristics)

  • 김범수;임용관;배원병;정해도
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.39-45
    • /
    • 1998
  • In the previous study. the powder casting was attempted as the rapid tooling. The powder casting was the process to cast dry powder into the casting mold transferred from R/P model and infiltrate the liquid binder to solidify the powder. And then, the melted copper was infiltrated to control the shrinkage rate of the final mold Conseqently, the shrinkage rate was under 0.1% through that process. The mechanical characteristic was also excellent. Generally, in the slurry casting, the alumina powder and the water soluble phenol were mainly used. However, the mechanical property of the phenol was not good enough to apply to molds directly. In this study, aluminium powder filled with epoxy is applicated to the slurry casting to solve these problems. The mechanical and thermal properties are better than phenol because the epoxy is the thermosetting resin. We achieved a successful result that the shrinkage rate is shortened about 0.047%. Futhermore, the manufacturing time and cost savings are significant. Finally, we assume that the developing possibility of this process is very optimistic.

  • PDF