• 제목/요약/키워드: Tool path optimization

검색결과 53건 처리시간 0.073초

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization using CL Surface)

  • 김수진;양민양
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.547-552
    • /
    • 2003
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR (material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over 300m. so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL(cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants wire applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to speaker mold machining. The finishing time was reduced to 12.6%. tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were removed.

  • PDF

On 5-Axis Freeform Surface Machining Optimization: Vector Field Clustering Approach

  • My Chu A;Bohez Erik L J;Makhanov Stanlislav S;Munlin M;Phien Huynh N;Tabucanon Mario T
    • International Journal of CAD/CAM
    • /
    • 제5권1호
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach based on vector field clustering for tool path optimization of 5-axis CNC machining is presented in this paper. The strategy of the approach is to produce an efficient tool path with respect to the optimal cutting direction vector field. The optimal cutting direction maximizes the machining strip width. We use the normalized cut clustering technique to partition the vector field into clusters. The spiral and the zigzag patterns are then applied to generate tool path on the clusters. The iso-scallop method is used for calculating the tool path. Finally, our numerical examples and real cutting experiment show that the tool path generated by the proposed method is more efficient than the tool path generated by the traditional iso-parametric method.

공구경로 곡면을 이용한 이송속도 최적화 (Feedrate Optimization Using CL Surface)

  • 김수진;정태성;양민양
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.39-47
    • /
    • 2004
  • In mold machining, there are many concave machining regions where chatter and tool deflection occur since MRR(material removal rate) increases as curvature increases even though cutting speed and depth of cut are constant. Boolean operation between stock and tool model is widely used to compute MRR in NC milling simulation. In finish cutting, the side step is reduced to about 0.3mm and tool path length is sometimes over loom, so Boolean operation takes long computation time and includes much error if the resolution of stock and tool model is larger than the side step. In this paper, curvature of CL (cutter location) surface and side step of tool path is used to compute the feedrate for constant MRR machining. The data structure of CL surface is Z-map generated from NC tool path. The algorithm to get local curvature from discrete data was developed and applied to compute local curvature of CL surface. The side step of tool path was computed by point density map which includes cutter location point density at each grid element. The feedrate computed from curvature and side step is inserted to new tool path to regulate MRR. The resultants were applied to feedrate optimization system which generates new tool path with feedrate from NC codes for finish cutting. The system was applied to the machining of speaker and cellular phone mold. The finishing time was reduced to 12.6%, tool wear was reduced from 2mm to 1.1mm and chatter marks and over cut on corner were reduced, compared to the machining by constant feedrate. The machining time was shorter to 17% and surface quality and tool was also better than the conventional federate regulation using curvature of the tool path.

포켓가공을 위한 오프셋 공구경로 연결 알고리즘 (Contour Parallel Tool-Path Linking Algorithm For Pocketing)

  • 박상철;정연찬
    • 한국CDE학회논문집
    • /
    • 제6권3호
    • /
    • pp.169-173
    • /
    • 2001
  • Presented in this paper is a CPO tool-path linking procedure optimizing technological objectives, such as dealing with islands (positive and negative) and minimizing tool retractions, drilling holes and slotting. Main features of the proposed algorithm are as follows; 1) a data structure, called a 'TPE-net', is devised to provide information on the parent/child relationships among the tool-path-elements, 2) the number of tool retractions is minimized by a 'tool-path-element linking algorithm'fading a tour through the TPE-net, and 3) the number of drilling holes is minimized by making use of the concept of the 'free space'.

  • PDF

풀림모사 기법을 이용한 NC 터릿 작업에서의 공구경로 최적화 (Tool Path Optimization for NC Turret Operation Using Simulated Annealing)

  • 조경호;이건우
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1183-1192
    • /
    • 1993
  • 본 연구에서는 다음과 같은 두가지 관점에서 공구경로 최적화를 위한 기존 방 법의 문제점을 검토하고 이의 개선 방안을 제시하였다. 첫째, 기존의 공구경로 산출 방법에서는 고려되지 않는 공구대의 공구 장착 현황(turret configuration)이 최적화 과정에서 고려되어야 한다. 둘째로, 제작과 관련한 구속조건(manufacturing con- straints)이 최적화 과정에 직접 반영되어야 한다.

Collision-free tool orientation optimization in five-axis machining of bladed disk

  • Chen, Li;Xu, Ke;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • 제2권4호
    • /
    • pp.197-205
    • /
    • 2015
  • Bladed disk (BLISK) is a vital part in jet engines with a complicated shape which is exclusively machined on a five-axis machine and requires high accuracy of machining. Poor quality of tool orientation (e.g., false tool positioning and unsmooth tool orientation transition) during the five-axis machining may cause collision and machine vibration, which will debase the machining quality and in the worst case sabotage the BLISK. This paper presents a reference plane based algorithm to generate a set of smoothly aligned tool orientations along a tool path. The proposed method guarantees that no collision would occur anywhere along the tool path, and the overall smoothness is globally optimized. A preliminary simulation verification of the proposed algorithm is conducted on a BLISK model and the tool orientation generated is found to be stable, smooth, and well-formed.

공구 궤적 재구성에 의한 밀링 가공 오차의 보상에 관한 연구 (A Study on the Compensation of Milling Errors by Regenerating of Tool Trajectory)

  • 쟝이브하스퀘트;필립데팡세;서태일
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.137-144
    • /
    • 1998
  • In this paper we present our research dealing with the problem of tool deflection during the milling. We try to compensate the errors by considering a new tool trajectory. In order to determine the compensated tool trajectory, the problem is divided in three steps : cutting forces model, tool deflection model and trajectory compensation. Starting from experimental data, we determine a cutting forces model., which allows us to anticipate the tool deflection along one nominal path. In order to determine the compensated tool trajectory, we propose in this paper a method of path compensation, called “mirror method”. This method of tool path optimization allows to minimize errors due to tool deflection. Several examples are processed in simulations and validated experimentally.

  • PDF

보간 길이 최적화에 의한 5축밀링 가공속도 향상 (Machining Speed Enhancement for 5-Axis Milling by Step Length Optimization)

  • 소범식;정융호
    • 한국CDE학회논문집
    • /
    • 제11권6호
    • /
    • pp.422-428
    • /
    • 2006
  • In this paper, an NC data optimization approach for enhancing 5-axis machining speed is presented. It is usual to use expensive commercial CAD/CAM programs for NC data of 5-axis machining, since it needs very large calculations for optimal tool positioning and orientation, tool path planning, and collision-free tool path generation. Since commercial CAD/CAM systems have similar functions and efficiency based on common algorithms of reliable theories, they do not have their own unique features for machining speed and efficiency. In other words, most commercial CAD/CAM systems consider only the characteristics of part geometry to be machined, which means that they generate almost the same NC data if the part to be machined is the same, even though different machines are used for the pin. A new approach is proposed for optimizing NC data of 5-axis machining, which is based on the characteristics of the machine to be operated. As a result, the speed of 5-axis machining can increase without losing machining accuracy and surface quality.

휴리스틱 알고리즘을 이용한 평면 자기연마 공구경로 최적화 (Tool-Path Optimization of Magnetic Abrasive Polishing Using Heuristic Algorithm)

  • 김상오;유만희;곽재섭
    • 한국생산제조학회지
    • /
    • 제20권2호
    • /
    • pp.174-179
    • /
    • 2011
  • This paper focuses on the optimal step-over value for magnetic tool path. Since magnetic flux density is changed according to distance from center of magnetic tool. Enhanced surface roughness is also different according to change of radius. Therefore, to get a identical surface roughness on workpiece, it is necessary to find optimal tool path including step-over. In this study, response surface models for surface roughness according to change of radiuses were developed, and then optimal enhanced surface roughness for each radius was selected using genetic algorithm and simulated annealing to investigate relation between radius and surface roughness. As a result, it found that step-over value of 6.6mm is suitable for MAP of magnesium alloy.