• 제목/요약/키워드: Tool Geometry

검색결과 542건 처리시간 0.026초

측벽 엔드밀 가공에서 형상 정밀도를 고려한 최적 절삭 조건 (Optimal Cutting Condition in Side Wall Milling Considering Form Accuracy)

  • 류시형;최덕기;주종남
    • 한국정밀공학회지
    • /
    • 제20권10호
    • /
    • pp.31-40
    • /
    • 2003
  • In this paper, optimal cutting condition to minimize the form error in side wall machining with a flat end mill is studied. Cutting forces and tool deflection are calculated considering surface shape generated by the previous cutting such as roughing. Using the form error prediction method from tool deflection, optimal cutting condition considering form accuracy is investigated. Also, the effects of tool teeth number, tool geometry and cutting conditions on form error are analyzed. The characteristics and the difference of generated surface shape in up and down milling are discussed and over-cut free condition in up milling is presented. Form error reduction method through successive up and down milling is also suggested. The effectiveness and usefulness of the presented method are verified from a series of cutting experiments under various cutting conditions. It is confirmed that form error prediction from tool deflection in side wall machining can be used in optimal cutting condition selection and real time surface error simulation for CAD/CAM systems. This study also contributes to cutting process optimization for the improvement of form accuracy especially in precision die and mold manufacturing.

표면처리 후 초고강도강 센터필러 프레스 금형의 효율적 보정기법 (An Effective Compensation Method of Press Tool Geometry for Stamping a Ultra High Strength Steel Center-pillar after Heat Treatment)

  • 이태길;곽종환;김세호
    • 소성∙가공
    • /
    • 제23권7호
    • /
    • pp.439-445
    • /
    • 2014
  • Changes in the accuracy of the geometrical shape after a surface treatment are often very large due to the variation of the deformation mechanisms such as edge draw-in and the variation in springback caused by the reduction in the coefficient of friction between the tool and the blank. In the present study, the resulting shape accuracy due to the changes in deformation is quantitatively examined in order to predict the variation and to remove any undesirable additional tool compensation for the center pillar member made from steel with a UTS of 980MPa. The study examines important process parameters that are closely related with the edge draw-in such as the blank holding force, the contact status between the tool and the blank and the friction coefficient. The proposed method is applied within the finite element analysis of the stamping process for tools after a surface treatment and the amount of edge draw-in and flush values are compared between the analysis and experiments. The results demonstrate that the proposed quantification and finite element scheme are applicable to complicated tool compensation procedures and compensation can be designed effectively.

디지털디자인도구의 Geometry 변형을 통한 비정형 디자인 형태 생성 방법에 관한 연구 (A Study on Free-form Design Shape Creation through Geometric Transformation of Digital Design Tool)

  • 박상준
    • 한국콘텐츠학회논문지
    • /
    • 제16권5호
    • /
    • pp.306-317
    • /
    • 2016
  • 비정형형태 생성을 위한 디지털디자인도구의 활용은 작업자의 능력에 따라 극히 주관적으로 활용되기 때문에, 공통적으로 활용될 수 있는 규칙의 설정을 통해 프로토타입 으로서 비정형 생성방법의 설정을 제시하고, 보다 효과적인 비정형 디자인 형태생성방법을 제시하고자 한다. 본 연구는 비정형 형태의 일반적 이론이 아닌 Concept발의-전개 단계에서 Mass구성 및 표현을 위한 비정형형태생성을 위한 디지털디자인도구의 활용 위주로 진행한다. 현대건축의 비정형적 형태는 디지털디자인도구와 디자인개념의 변화에서 시작된다. 선행연구를 통한 비정형적 작품을 사례를 바탕으로, 이를 분석하여 나타나는 형태적 특성을 디지털디자인도구의 언어를 중심으로 해석하고, 디지털디자인도구의 Geometry 변형을 통해 비정형 형태를 구현하는 기법을 제안하고자 한다.

공구날 특이길이의 물리적 적합성 고찰 (Physically Compatible Characteristic Length of Cutting Edge Geometry)

  • 안일혁;김익현;황지홍
    • 한국정밀공학회지
    • /
    • 제29권3호
    • /
    • pp.279-288
    • /
    • 2012
  • The material removal mechanism in machining is significantly affected by the cutting edge geometry. Its effect becomes even more substantial when the depth of cut is relatively small as compared to the characteristic length which represents the shape and size of the cutting edge. Conventionally, radius or focal length has been employed as the characteristic length with the assumption that the shape of cutting edge is round or parabolic. However, in reality, there could be various ways to determine the radius or focal length even for the same tool edge profile, depending on the region to be considered as cutting edge in the measured profile and the constraints to be set in constructing the best fitted circle or parabola. In this regard, the present study proposes various models to determine the characteristic length in terms of radius or focal length. Their physical compatibility are validated by carrying out 2D orthogonal cutting experiments using inserts with a wide range of characteristic length ($30{\sim}180\;{\mu}m$ in terms of radius) and then by investigating the correlation between the characteristic length and the cutting forces. Such validation is based on the common belief that the larger the characteristic length is, the blunter the cutting edge is and the higher the cutting forces are. Interestingly, the results showed that the correlation is higher for the radius or focal length obtained with a constraint that the center of best fitted circle or the focus of the best fitted parabola should be on the bisectional line of the wedge angle of tool.

항공기용 복합재료 샌드위치 구조물의 오토클레이브 성형시 발생되는 결함 원인 분석과 그 최소화 방안 (A Study on the Analysis of Causes & Minimizing of Defects at Composite Materials Sandwich Aircraft Structure in Autoclave Processing)

  • 권순철;임철문;최병근;이세원;한중원;김윤해
    • Composites Research
    • /
    • 제14권1호
    • /
    • pp.22-29
    • /
    • 2001
  • 본 논문의 목적은 샌드위치 구조물의 오토클레이브 성형시 발생하는 승압률, 승온율, 금형 라운드 각도, 코어의 두께, 그리고 결함에 대한 저글 높이의 영향을 결정하고, 하니콤으로 보강된 항공기용 샌드위치 구조의 결함을 최소화시키는 것이다. 결과는 항공기용 샌드위치 구조와 금형 라운드 각도와 같은 금형의 형상, 코어의 두께, 저글의 높이, 그리고 승압률, 승온율과 같은 오토클레이브의 성형 조건이 코어의 무브먼트. 코어의 주름, 프리프레그의 뜨임 현상 그리고 코어의 침하에 영향을 기침을 보여주었다.

  • PDF

밀링가공시 절삭조건이 비절삭력계수에 미치는 영향 분석 (Effects of Cutting Conditions on Specific Cutting Force Coefficients in Milling)

  • 이신영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.93-98
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. Specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The effects of the cutting conditions on the specific cutting force constants in milling were studied. The model is verified through comparisons of model predicted cutting forces with measured culling forces obtained from machining experiments

  • PDF

엔드밀 가공의 절삭력 예측 및 실험 (Prediction and Experiments of Cutting Forces in End Milling)

  • 이신영;임용묵
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.9-15
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. The specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments. The results showed good agreement and from that we could predict reasonably the cutting forces in end milling.

정형가곡을 위한 공구경로 보상 : 윤곽가공을 중심으로

  • 서석환;조정훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.34-38
    • /
    • 1992
  • Geometry based CAD/CAM system is hard to achieve "net shape machining" For a net shape machining, the machining errors should be compensated by off-line CAD/CAM system followed by on-line control system. In this paper, we investigate an off-line compensation scheme for the machining errors due to tool deflection in contouring operation. The significance of the deflection errors is first shown, and a compensation is sought via modifying the nominal tool path. In modification, tool deflection amount is iteratively compensated until the deflection amount is iteratively compensated until the deflected path results in the desired contour within a tolerance. The path modification algorithm has been tested via computer simulation. The developed algorithm can be used as a postprocessor for the current CAD/CAM system based on geometric modeling as a means for enhancing the machining accuracy.

방전가공된 공구강표면의 연마재 유동가공에 관한 연구 (A Study of Abrasive Flow Machining on EDMed Surfacs of Tool Steel)

  • 최재찬;김창호;허관도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 춘계학술대회 논문집
    • /
    • pp.8-13
    • /
    • 1996
  • A relatively new non-traditional finishing process called Abrasive Flow Machining(AFM) is being used to deburr, polish and radius workpiece or produce compressive residual stresses by flowing an abrasive-laden viscoelastic compound across the surface to be machined. This paper presents the effects of AFM on surfaces of tool steel produced by EDM and W-EDM. Using AFM, white layer produced by EDM is erased almost equally and the amount of metal removal is significantly affected the initally machined surface condition of workpiece. The dimension of workiece is enlarged and its surface roughness is improved as AFM time is increased. The optimal AFM time can be established from the experimental results. It is considered that the grinding method lide AFM is useful to grind complex or slim geometry of workpiece even. Scanning Electron Microscopy(SEM) was used to study the surface characteristics of the workpiece before and after AFM.

  • PDF

밀폐형 동회전 2축 스크류의 제작에 관한 연구 (A Study on Machining of the Self-Wiping Co-Rotating Twin Screw)

  • 최부희;이상혁;최상훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1426-1429
    • /
    • 2003
  • This paper describes screw tool design and machining method witch is able to design tool profile and 3-dimensional geometry for screws in self-wiping co-rotating twin screw extruder. The geometric features of screws for co-rotating twin screw extruders are developed from kinematic principles. Closely self-wiping screw segments are manufactured in universal milling machine by using designed screw tools. It is shown that experimental results verified the closely intermeshing condition in twin screw.

  • PDF