• 제목/요약/키워드: Tool Corner Radius

검색결과 21건 처리시간 0.019초

Optimal Ball-end and Fillet-end Mills Selection for 3-Axis Finish Machining of Point-based Surface

  • Kayal, Prasenjit
    • International Journal of CAD/CAM
    • /
    • 제7권1호
    • /
    • pp.51-60
    • /
    • 2007
  • This paper presents an algorithm of optimal cutting tool selection for machining of the point-based surface that is defined by a set of surface points rather than parametric polynomial surface equations. As the ball-end and fillet-end mills are generally used for finish machining in a 3-axis computer numerical control machine, the algorithm is applicable for both cutters. The optimum tool would be as large as possible in terms of the cutter radius and/or corner radius which maximise (s) the material removal rate (i.e., minimise (s) the machining time), while still being able to machine the entire point-based surface without gouging any surface point. The gouging are two types: local and global. In this paper, the distance between the cutter bottom and surface points is used to check the local gouging whereas the shortest distance between the surface points and cutter axis is effectively used to check the global gouging. The selection procedure begins with a cutter from the tool library, which has the largest cutter radius and/or corner radius, and then adequacy of the point-density is checked to limit the accuracy of the cutter selection for the point-based surface within tolerance prior to the gouge checking. When the entire surface is gouge-free with a chosen cutting tool then the tool becomes the optimum cutting tool for a list of cutters available in the tool library. The effectiveness of the algorithm is demonstrated considering two examples.

스피닝 공정을 이용한 다단 원형 컵 형상의 성형성에 관한 연구 (The Spinnability of Multi-step Cylindrical Cup in Spinning Process)

  • 박중언;한창수;최석우;김승수;나경환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.1016-1020
    • /
    • 2001
  • The spinning is a very effective manufacturing technology for short production runs in a variety of sizes and shapes, because it can form the cross-section or tubular parts various shapes. However extensive experimental and analytical research has not been carried out. In this study, and fundamental experiment was conducted to improve productivity with process parameter such as tool path, angle of roller holder(a), feed rate(v) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to have and effect on spring back. The clearance was controlled in order to achieve the precision product which is comparable to deep drawing one. And also thickness and diameter distribution of a multistage cup obtained by shear spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

열박음에 의한 탄성변형을 고려한 평기어금형 제작 방법에 관한 연구 (Spur gear forging tool manufacturing method considering elastic deformation due to shrink-fitting)

  • 강종훈;고병호;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.381-385
    • /
    • 2006
  • This research introduces easy tool manufacturing method regarding tool manufacturing procedure. In the conventional method, wire cutting machining and lapping operation of corner and render region were performed after shrink-fitting to ensure the accuracy of gear profile. But lapping operation is very difficult due to corner and render is located deep inside of die. In this research, wire cutting operation was performed after $1^{st}$ ring was shrink-fitted to ease lapping operation and increase the accuracy of corner radius. Before $2^{nd}$ ring fitting, lapping was completed. Elastic deformation amount due to $2^{nd}$ ring fitting and cold forging was calculated through finite element analysis and wire cutting specification was offset in that amount. Comparison of gear dimension between analysis and forged part ensures the validity of new manufacturing methods.

  • PDF

단붙이 로드의 성형에서 소재유동에 관한 해석 (Numerical analysis on the material flow in stepped rod forming)

  • 고병두;강동명;이하성
    • Design & Manufacturing
    • /
    • 제2권2호
    • /
    • pp.43-47
    • /
    • 2008
  • This paper is concerned with the analysis of material flow characteristics of stepped rod forming. The analysis in this paper concentrated on the evaluation of the design parameters for deformation patterns of tube forming, load characteristics, extruded length, and die pressure. The design factors such as punch nose radius, die corner radius, friction factor, and punch face angle are involved in the simulation. The stepped rod forming is analyzed by using a commercial finite element code. This simulation makes use of stepped rod material and punch geometry on the basis of punch geometry recommended by International Cold Forging Group. As radius ratio is large, forming load was reduced but extruded length ratio was increased.

  • PDF

박판성형 해석용 마찰모델 (1부 : 실험) (Friction Model for Sheet Metal Forming Analysis (Part1 : Experiment))

  • 이봉현;금영탁
    • 소성∙가공
    • /
    • 제11권4호
    • /
    • pp.349-354
    • /
    • 2002
  • In order to find the effect of lubricant viscosity, sheet surface roughness, tool geometry, and forming speed on the frictional characteristics in sheet metal forming, a sheet metal friction tester was designed and manufactured and friction test of various sheet were performed. Friction test results showed that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is relatively high. The result also show that as the punch radius and punch speed becomes bigger, the friction coefficient is smaller. Using experimental results, the mathematical expression between friction coefficient and lubricant viscosity, surface roughness, punch comer radius, or punch speed is also described.

다구찌법을 활용한 헤딩공정설계 최적화 연구 (A study on the cold heading process design optimization by taguchi method)

  • 황준;원진환
    • 한국결정성장학회지
    • /
    • 제33권6호
    • /
    • pp.216-225
    • /
    • 2023
  • 본 연구에서는 냉간 헤딩 공정에서 성형하중과 펀치 금형의 마모 감소를 통한 펀치 수명 증대를 위해 헤딩용 펀치 형상 최적설계를 수행하였다. 기존 생산에 사용되는 냉간 헤딩 펀치와 성형공정에 대한 유한요소해석 시뮬레이션을 통해 성형하중과 유동 특성 분석, 펀치금형에 집중되는 유효응력 및 마모량에 대하여 분석하였으며, 이를 통해 금형 마모와 밀접한 주요 설계인자를 확인하였다. 펀치금형의 최적설계 변수로서는 펀치 금형 포인트각(Point angle), 에지 반경값(Corner radius), 펀치소재재종(die material type), 마찰계수(friction coefficient) 등의 4가지 변수를 대상으로 4인자 3수준 인자 및 변수 수준을 설정하고, 성형해석 시뮬레이션과 다구찌법을 활용하여 설계인자별 영향도를 분석하여 최적의 최적설계 인자를 결정하였다. 본 연구를 통해 얻어진 최적설계변수를 적용하여 냉간 헤딩용 펀치 최적설계 시뮬레이션 결과, 각 펀치에 발생하는 최대유효응력은 최대 8.9 % 감소 효과를, 최대 펀치 마모 깊이는 37 % 감소 효과를, 성형하중은 평균 20% 수준 의 감소효과를 얻을 수 있었다. 현재, 소성 성형제품군이 적용되는 자동차, 건설 플랜트사에서 요구되는 고품질에 대응하면서도 적정 제조원가 절감을 위한 성형성 개선을 위한 성형공정개발 및 금형설계의 최적화가 지속적으로 필요하며, 향후 연구 결과를 현업에 적용하여 제품 성형성 개선 및 금형수명 증대 관리를 위한 기술자료로 활용하고자 한다.

스피닝공정에 있어서 스프링백 억제방안 (Springback Reduction of Multi-step Cylindrical Cup in Spinning Process.)

  • 박중언;이우영;최석우;김승수;나경환
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.186-191
    • /
    • 2001
  • Spinning process is a chipless metal forming method for axi-symmetric parts, which is more economical, efficient and versatile method for producing parts than the other sheet metal forming process such as stamping or deep drawing. In this study, a fundamental experiment was conducted to improve productivity with process parameters such as tool path, angle of roller holder($\alpha$), feed rate($\gamma$) and corner radius of forming roller(Rr). These factors were selected as variables in the experiment because they were most likely expected to hale an effect on spring back. The empirical results were analyzed to know how much spring back was affected by these factors. And also thickness and diameter distribution of a multistage cup obtained by spinning process were observed and compared with those of a commercial product produced by conventional deep drawing.

  • PDF

코너부의 펜슬가공시 볼엔드밀의 공구변형 특성 (Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner)

  • 왕덕현;윤경석
    • 한국정밀공학회지
    • /
    • 제16권2호통권95호
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

Can-Flange 성형에서 금형형상에 따른 소재 유동특성 (The Material Flow according to Die Geometry in Can-Flange Forming)

  • 고병두;이하성
    • Design & Manufacturing
    • /
    • 제6권2호
    • /
    • pp.42-47
    • /
    • 2012
  • The paper deals with an analysis of an extrusion process with a divided material flow in a combined radial - backward extrusion. We have discussed the influences of tool geometry such as punch nose angle, relative gap height, die corner radius on material flow and surface expansion into can and flange region. To analyse the process, numerical simulations by the FEM and experiment by physical modeling using Al alloy as a model material have been performed. Based on the results, the influence of fixed parameters on the distribution of divided material flow and surface expansion are obtained.

  • PDF

박판 성형공정 유한요소 해석용 마찰모델 (Friction Model for Finite Element Analysis of Sheet Metal Forming Processes)

  • 금영탁;이봉현
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.