• 제목/요약/키워드: Tomography, X-ray computer

검색결과 55건 처리시간 0.033초

Basic Physical Principles and Clinical Applications of Computed Tomography

  • Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제32권1호
    • /
    • pp.1-17
    • /
    • 2021
  • The evolution of X-ray computed tomography (CT) has been based on the discovery of X-rays, the inception of the Radon transform, and the development of X-ray digital data acquisition systems and computer technology. Unlike conventional X-ray imaging (general radiography), CT reconstructs cross-sectional anatomical images of the internal structures according to X-ray attenuation coefficients (approximate tissue density) for almost every region in the body. This article reviews the essential physical principles and technical aspects of the CT scanner, including several notable evolutions in CT technology that resulted in the emergence of helical, multidetector, cone beam, portable, dual-energy, and phase-contrast CT, in integrated imaging modalities, such as positron-emission-tomography-CT and single-photon-emission-computed-tomography-CT, and in clinical applications, including image acquisition parameters, CT angiography, image adjustment, versatile image visualizations, volumetric/surface rendering on a computer workstation, radiation treatment planning, and target localization in radiotherapy. The understanding of CT characteristics will provide more effective and accurate patient care in the fields of diagnostics and radiotherapy, and can lead to the improvement of image quality and the optimization of exposure doses.

범용 소프트웨어를 사용한 산업용 3차원 X-ray Computed Tomography의 툴 개발 (On the development of S/W tools for industrial 3D X-ray computed tomography employing general software)

  • 최형석;양윤기
    • 전기전자학회논문지
    • /
    • 제23권3호
    • /
    • pp.768-776
    • /
    • 2019
  • 4차 산업 혁명 시대를 맞이하여, 최근 기계, 전자 부품의 설계, 제조, 검사에 첨단 IT 기술을 융합하는 사례가 늘고 있다. 본 연구에서는 최근에 구축된 산업용 X-ray CT(computed tomography)를 사용한 산업용 부품의 검사에 대한 최신기술에 대해서 다룬다. 먼저 구축된 첨단의 최신 산업용 CT의 구조와 원리에 대해서 설명하며, 이러한 장비의 역할과 성능에 대해서 설명하고, 본 장비의 분석기법을 보완하기 위한 새로운 연구기반의 구축에 대해서 다룬다. 특히 장비의 출력데이터를 Matlab과 같은 범용 연구 툴로 전송하여 연구를 진행할 수 있는 기반을 구축하며, 이를 토대로 기존의 운용 소프트웨어가 제공하지 못했던 보조적인 3D user interface와 3차원 영상처리를 위한 플랫폼을 구축하는 연구를 진행 하였다. 산업용 3차원 X-ray는 아직 소개 된지 얼마 되지 않은 첨단의 고가의 장비로서 이를 활용할 연구의 종류와 내용이 매우 풍부한 주제로, 이러한 기초적인 연구기반은 추후의 보다 발전적인 연구를 위한 아주 유용한 토대가 될 것으로 판단된다.

X-ray tomography 분석과 기계 학습을 활용한 금속 3D 프린팅 소재 내의 기공 형태 분류 (Characterization and Classification of Pores in Metal 3D Printing Materials with X-ray Tomography and Machine Learning)

  • 김은아;권세훈;양동열;유지훈;김권일;이학성
    • 한국분말재료학회지
    • /
    • 제28권3호
    • /
    • pp.208-215
    • /
    • 2021
  • Metal three-dimensional (3D) printing is an important emerging processing method in powder metallurgy. There are many successful applications of additive manufacturing. However, processing parameters such as laser power and scan speed must be manually optimized despite the development of artificial intelligence. Automatic calibration using information in an additive manufacturing database is desirable. In this study, 15 commercial pure titanium samples are processed under different conditions, and the 3D pore structures are characterized by X-ray tomography. These samples are easily classified into three categories, unmelted, well melted, or overmelted, depending on the laser energy density. Using more than 10,000 projected images for each category, convolutional neural networks are applied, and almost perfect classification of these samples is obtained. This result demonstrates that machine learning methods based on X-ray tomography can be helpful to automatically identify more suitable processing parameters.

핵연료 펠릿의 X-선 단층촬영 기반 시뮬레이션 타당성 해석 (X-Ray Tomography Based Simulation Feasibility Analysis of Nuclear Fuel Pellets)

  • 김재준
    • 비파괴검사학회지
    • /
    • 제30권4호
    • /
    • pp.324-329
    • /
    • 2010
  • 원자력발전소에서 사용되고 있는 연료봉은 지르코늄 합금 튜브에 동봉되어 있는 이산화우라늄 펠릿으로 구성되어 있다. 펠릿 표면은 원자로를 가동시키는 동안 국부 핫스팟을 예방하기 위해 튜브로 장전된 후 작은 구멍, 균열, 칩핑 결함이 없어야 한다. 본 논문은 X-선 단층촬영 시뮬레이션을 통하여 핵 연료봉 펠릿의 표면 결함을 검출하기 위한 타당성을 조사하였다. 병렬과 팬빔 여과후 역투영 방법을 이용하여 재구성된 영상은 시뮬레이션 데이터와 MPS(missing pellet surface) 영상데이터의 접근성을 확인하였다.

Lightweight Convolutional Neural Network (CNN) based COVID-19 Detection using X-ray Images

  • Khan, Muneeb A.;Park, Hemin
    • Journal of Multimedia Information System
    • /
    • 제8권4호
    • /
    • pp.251-258
    • /
    • 2021
  • In 2019, a novel coronavirus (COVID-19) outbreak started in China and spread all over the world. The countries went into lockdown and closed their borders to minimize the spread of the virus. Shortage of testing kits and trained clinicians, motivate researchers and computer scientists to look for ways to automatically diagnose the COVID-19 patient using X-ray and ease the burden on the healthcare system. In recent years, multiple frameworks are presented but most of them are trained on a very small dataset which makes clinicians adamant to use it. In this paper, we have presented a lightweight deep learning base automatic COVID-19 detection system. We trained our model on more than 22,000 dataset X-ray samples. The proposed model achieved an overall accuracy of 96.88% with a sensitivity of 91.55%.

Hybrid model-based and deep learning-based metal artifact reduction method in dental cone-beam computed tomography

  • Jin Hur;Yeong-Gil Shin;Ho Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2854-2863
    • /
    • 2023
  • Objective: To present a hybrid approach that incorporates a constrained beam-hardening estimator (CBHE) and deep learning (DL)-based post-refinement for metal artifact reduction in dental cone-beam computed tomography (CBCT). Methods: Constrained beam-hardening estimator (CBHE) is derived from a polychromatic X-ray attenuation model with respect to X-ray transmission length, which calculates associated parameters numerically. Deep-learning-based post-refinement with an artifact disentanglement network (ADN) is performed to mitigate the remaining dark shading regions around a metal. Artifact disentanglement network (ADN) supports an unsupervised learning approach, in which no paired CBCT images are required. The network consists of an encoder that separates artifacts and content and a decoder for the content. Additionally, ADN with data normalization replaces metal regions with values from bone or soft tissue regions. Finally, the metal regions obtained from the CBHE are blended into reconstructed images. The proposed approach is systematically assessed using a dental phantom with two types of metal objects for qualitative and quantitative comparisons. Results: The proposed hybrid scheme provides improved image quality in areas surrounding the metal while preserving native structures. Conclusion: This study may significantly improve the detection of areas of interest in many dentomaxillofacial applications.

초음파 tomography를 응용한 콘크리트 구조물의 비파괴 시험에 관한 연구 (Application of Ultrasound Tomography for Non-Destructive Testing of Concrete Structure)

  • 김영기;윤영득;윤종열;김정수;김운경;송문호
    • 대한전자공학회논문지SP
    • /
    • 제37권1호
    • /
    • pp.27-36
    • /
    • 2000
  • 본 연구에서는 초음파와 tomography 기법을 기반으로 콘크리트 구조물의 비파괴 시험에 대한 방법론을 정립하고 검증하였다 일반적인 X-ray tomography에서는 물체를 통과하는 파동의 감쇠(attenuation) 데이터에 기초를 두고있는 반면에, 본 연구에서는 time-of-flight(TOF) 데이터를 사용하여 매질의 굴절률(refractive index)을 포괄적으로 표현하는 단층영상을 복원한다 X-ray tomography에서는 측정된 감쇠 데이터를 영상복원(Image reconstruction) 알고리즘에 의해서 처리하며, 파동의 굴절은 고려할 필요가 없다 그러나 초음파는 매질(medium)의 굴절률(refractive index)에 따라 초음파의 경보가 변경되므로 초음파 tomography에서는 초음파 경로의 연산이 선행되어야만 단층영상을 복원할 수 있게 된다 초음파 정보의 연산은 가하광학(Geometrical Optic)에서 사용되는 굴절률과 경로의 관계에 기초를 둔다 영상 복원은 대수학적 접근 방법인 ART (algebraic reconstruction technique) 또는 SIRT(simultaneous iterative reconstruction technique)를 기초로 연산된 초음파의 경로를 따라 선적분한 TOF 값과 측정된 TOF 값의 차이를 기반으로 수행된다 실제 구현에서는 초음파가 직진한다는 가정하에 영상을 복원하고, 이를 기반으로 초음파의 경로를 연산하였다 본 논문에서는 이들 두 과정(경로연산 및 영상복원)의 반복연산을 통하여 영상을 복원하였다. 세안하는 알고리즘을 모의실험으로 평가하였고, 실제 콘크리트 구조물에 적용하여 본 방법론의 무한한 가능성을 입증하였다.

  • PDF

Application of X-ray Computer Tomography (CT) in Cattle Production

  • Hollo, G.;Szucs, E.;Tozser, J.;Hollo, I.;Repa, I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권12호
    • /
    • pp.1901-1908
    • /
    • 2007
  • The aim of this series of experiments was to examine the opportunity for application of X-ray computer tomography (CT) in cattle production. Firstly, tissue composition of M. longissimus dorsi (LD) cuts between the $11-13^{th}$ ribs (in Exp 1. between the $9-11^{th}$ ribs), was determined by CT and correlated with tissue composition of intact half carcasses prior to dissection and tissue separation. Altogether, 207 animals of different breeds and genders were used in the study. In Exp. 2 and 3, samples were taken from LD cuts, dissected and chemical composition of muscle homogenates was analysed by conventional procedures. Correlation coefficients were calculated among slaughter records, tissues in whole carcasses and tissue composition of rib samples. Results indicated that tissue composition of rib samples determined by CT closely correlated with tissue composition results by dissection of whole carcasses. The findings revealed that figures obtained by CT correlate well with the dissection results of entire carcasses (meat, bone, fat). Close three-way coefficients of correlation (r = 0.80-0.97) were calculated among rib eye area, volume of cut, pixel-sum of adipose tissue determined by CT and intramuscular fat or adipose tissue in entire carcasses. Estimation of tissue composition of carcasses using equations including only CT-data as independent variables proved to be less reliable in prediction of lean meat and bone in carcass ($R^2 = 0.51-0.86$) than for fat (($R^2 = 0.83-0.89$). However, when cold half carcass weight was also included in the equation, the coefficient of determination exceeded $R^2 = 0.90$. In Exp. 3 tissue composition of rib samples by CT were compared to the results of EUROP carcass classification. Findings revealed that CT analysis has higher predictive value in estimation of actual tissue composition of cattle carcasses than EUROP carcass classification.

A Deep Learning Approach for Covid-19 Detection in Chest X-Rays

  • Sk. Shalauddin Kabir;Syed Galib;Hazrat Ali;Fee Faysal Ahmed;Mohammad Farhad Bulbul
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.125-134
    • /
    • 2024
  • The novel coronavirus 2019 is called COVID-19 has outspread swiftly worldwide. An early diagnosis is more important to control its quick spread. Medical imaging mechanics, chest calculated tomography or chest X-ray, are playing a vital character in the identification and testing of COVID-19 in this present epidemic. Chest X-ray is cost effective method for Covid-19 detection however the manual process of x-ray analysis is time consuming given that the number of infected individuals keep growing rapidly. For this reason, it is very important to develop an automated COVID-19 detection process to control this pandemic. In this study, we address the task of automatic detection of Covid-19 by using a popular deep learning model namely the VGG19 model. We used 1300 healthy and 1300 confirmed COVID-19 chest X-ray images in this experiment. We performed three experiments by freezing different blocks and layers of VGG19 and finally, we used a machine learning classifier SVM for detecting COVID-19. In every experiment, we used a five-fold cross-validation method to train and validated the model and finally achieved 98.1% overall classification accuracy. Experimental results show that our proposed method using the deep learning-based VGG19 model can be used as a tool to aid radiologists and play a crucial role in the timely diagnosis of Covid-19.

Wavelet을 이용한 CT 3차원 뇌혈관에서의 노이즈 제거 필터 구현 (Wavelet-based Noise reduction filter for 3-dimensional Computed Tomography brian angiography)

  • 성열훈;박현재;강행봉
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 가을 학술발표논문집 Vol.32 No.2 (2)
    • /
    • pp.859-861
    • /
    • 2005
  • X-ray를 이용한 CT(Computed Tomography : 이하 CT)영상은 사물에 대해 회전하면서 X-ray가 투과하여 감약 정도에 따라서 영상을 획득하지만 검사 목적과는 관계없이 발생되는 통계적인 오차로 인해 정확한 CT영상의 구성을 교란하거나 방해하여 영상의 질을 저하시키고 미세 부분의 관찰 능력을 감소시키는 장해 음영인 아티팩트(artifact)라는 노이즈가 발생한다. 이러한 노이즈를 제거하는 필터를 설계 할 때는 두 가지 고려해야 할 사항이 있는데 첫째는 영상내의 노이즈을 정확히 판단하여 효과적으로 제거해야 하며, 둘째로는 원래의 영상에 가깝도록 경계와 같은 세부 영역을 보존해야 한다는 점이다. 기존에는 mean 필터나 median 필터, 그리고 Gaussian 필터 등을 사용했지만 상세한 부분을 보존하기에는 실패하는 단점이 있다. 따라서 본문에서는 wavelet 변환을 하여 영상의 주파수 대역을 저주파 영역과 고주파 영역으로 분리하여 각각의 영역에서 노이즈를 제거할 수 있도록 적합한 필터를 설계하고 방법을 제안하여 그 필터를 CT 3차원 뇌혈관 영상에 적용하여 많은 노이즈를 제거하였고 낮은 Threshold값에서도 작은 혈관을 관찰 할 수 있었다.

  • PDF