• Title/Summary/Keyword: Toluene degradation

Search Result 127, Processing Time 0.021 seconds

Structural and Photocatalytic Properties of TiO2 Thin Film Coated Glass Beads (유리알에 코팅된 TiO2 박막의 구조 및 광촉매 특성)

  • Ji Eun, Jeong;Chang-Yong, Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2023
  • The glass bead surface was coated using a TiO2 sol, after which dry-treated (TB) and calcined (TBc) samples were prepared. Photocatalytic degradation of methylene blue and toluene, as well as characterization of the TiO2 thin films, were carried out. The TiO2 thin film of the TB sample had the same shape as the sponge foam, according to FE-SEM, XPS, and FTIR analyses, and contained both amorphous and crystalline TiO2. On the other hand, crystalline TiO2 was mainly present in the TiO2 thin film of the TBc sample, and needle-shaped particles and tiny ones were mixed. The adsorption capacity for methylene blue and the degradation rate of the TBc sample were less than 10 % compared with those of the TB sample, and the adsorption capacity and degradation rate of the TBc sample decreased similarly as the amount of TiO2 coating increased. The amount of toluene adsorption for the TBc sample (46 mg/g) was smaller than that of the TB sample with the same coating amount, but the degradation rate was similar. In the case of the TB sample, the degradation rate for toluene decreased less than the adsorption capacity as the amount of TiO2 coating increased. This result is considered to be because, in the non-calcined TB sample, the active site reduction of the crystalline particles occurred less and the specific surface area of the amorphous texture decreased as the amount of TiO2 coating increased.

Change of Sludge Consortium in Response to Sequential Adaptation to Benzene, Toluene, and o-Xylene

  • Park, Jae-Yeon;Sang, Byoung-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1772-1781
    • /
    • 2007
  • Activated sludge was sequentially adapted to benzene, toluene, and o-xylene (BTX) to study the effects on the change of microbial community. Sludge adapted to BTX separately degraded each by various rates in the following order; toluene>o-xylene>benzene. Degradation rates were increased after exposure to repeated spikes of substrates. Eleven different kinds of sludge were prepared by the combination of BTX sequential adaptations. Clustering analyses (Jaccard, Dice, Pearson, and cosine product coefficient and dimensional analysis of MDS and PCA for DGGE patterns) revealed that acclimated sludge had different features from nonacclimated sludge and could be grouped together according to their prior treatment. Benzene- and xylene-adapted sludge communities showed similar profiles. The sludge profile was affected from the point of the final adaptation substrate regardless of the adaptation sequence followed. In the sludge adapted to 50 ppm toluene, Nitrosomonas sp. and bacterium were dominant, but these bands were not dominant in benzene and benzene after toluene adaptations. Instead, Flexibacter sp. was dominant in these cultures. Dechloromonas sp. was dominant in the culture adapted to 50 ppm benzene. Thauera sp. was the main band in the sludge adapted to 50 ppm xylene, but became vaguer as the xylene concentration was increased. Rather, Flexibacter sp. dominated in the sludge adapted to 100 ppm xylene, although not in the culture adapted to 250 ppm xylene. Two bacterial species dominated in the sludge adapted to 250 ppm xylene, and they also existed in the sludge adapted to 250 ppm xylene after toluene and benzene.

Bioactive Foam Reactors for the Enhanced Biological Degradation of Toluene (계면활성제 거품을 이용한 미생물반응기에서의 기체상 톨루엔 분해)

  • Kim, Yong-Sik;Son, Young-Kyu;Khim, Jee-Hyung;Song, Ji-Hyeon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.5
    • /
    • pp.468-475
    • /
    • 2005
  • Biofilters packed with various materials have emerged as a sustainable technology for the treatment of volatile organic compounds (VOCs); however, problems including low performance and clogging are commonly encountered. Recently, a bioactive foam reactor (BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of BFRs using toluene as a model compound. Prior to bioreactor studies, a series of bottle tests were used to select a suitable surfactant for the BFR application. Experimental results of the batch bottle tests indicated that TritonX-100 was the most appropriate one among the surfactants tested, since it showed a minimal effect on the toluene biodegradation rate while the other surfactants lowered the toluene biodegradation rate significantly. Using the selected surfactant, the BFR performance was determined by changing operating parameters including gas residence time and toluene loading. As the gas residence time increased from 0.5 minutes to 2 minutes, the toluene removal efficiency increased from approximately 50% to 80%. In addition, an increase of the toluene loading from $38\;g/m^3/hr$ to $454\;g/m^3/hr$ resulted in a decrease of toluene removal efficiency from approximately 70% to 20%. The BFR had a maximum elimination capacity of $108\;g/m^3/hr$ for toluene, which was much higher than those generally reported in the literature. The high toluene-elimination performance indicates that the BFR be a potential alternative to the conventional, packed-type biofilters. However, the limitation of toluene solubilization and foam stability at either high or low gas flow rate are still problems to be challenged.

Comparative Genomic Analysis and BTEX Degradation Pathways of a Thermotolerant Cupriavidus cauae PHS1

  • Chandran Sathesh-Prabu;Jihoon Woo;Yuchan Kim;Suk Min Kim;Sun Bok Lee;Che Ok Jeon;Donghyuk Kim;Sung Kuk Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.7
    • /
    • pp.875-885
    • /
    • 2023
  • Volatile organic compounds such as benzene, toluene, ethylbenzene, and isomers of xylenes (BTEX) constitute a group of monoaromatic compounds that are found in petroleum and have been classified as priority pollutants. In this study, based on its newly sequenced genome, we reclassified the previously identified BTEX-degrading thermotolerant strain Ralstonia sp. PHS1 as Cupriavidus cauae PHS1. Also presented are the complete genome sequence of C. cauae PHS1, its annotation, species delineation, and a comparative analysis of the BTEX-degrading gene cluster. Moreover, we cloned and characterized the BTEX-degrading pathway genes in C. cauae PHS1, the BTEX-degrading gene cluster of which consists of two monooxygenases and meta-cleavage genes. A genome-wide investigation of the PHS1 coding sequence and the experimentally confirmed regioselectivity of the toluene monooxygenases and catechol 2,3-dioxygenase allowed us to reconstruct the BTEX degradation pathway. The degradation of BTEX begins with aromatic ring hydroxylation, followed by ring cleavage, and eventually enters the core carbon metabolism. The information provided here on the genome and BTEX-degrading pathway of the thermotolerant strain C. cauae PHS1 could be useful in constructing an efficient production host.

Isolation and Characterization of Naturally Occuring Bacteria Carried TOL Plasmid (TOL 플라스미드 세균의 분리와 특성)

  • Nam, Cho-Byung;Cho, In-Sun;Rhee, Young-Ha;Ryu, Jae-Keun;Min, Kyung-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.4
    • /
    • pp.321-326
    • /
    • 1989
  • Eighty two bacterial strains have been isolated from five different soil and sewage samples by selective enrichment culture on m-toluate minimal medium. Two of these were identified as Pseudomonas capacia, one as P. putida, one as Yersinia intermedia, and one as Flavobaeterium odoratum. P. cepacia SUB37 appeared to carry plasmid superficially similar to TOL plasmid previously described in p. putida mt-2 and other two plasmids from Flavobacterium odorutum and Y. intermedia larger than that of p. putida mt-2. p. cepacia SUB37 was sensitive to streptomycin but resistant to rifampicin. P. cepacia SUB37 carrying plasmid metabolizes the hydrocarbons to benzoate and toluates via the corresponding alcohols and aldehydes. By the curing experiment, it appears that P. cepacia SUB37 carries TOL plasmid encoding for the enzymes responsible for the catabolism of toluene and xylene via benzoate and the toluates and then by meta pathway in the process of degradation of aromatic hydrocarbons. p. cepacia SUB37 degraded m-toluate rapidly to be very low level when it was fully grown.

  • PDF

Study of the Photodegradation Properties of Toluene using Photocatalysts Modified by Metal Matter (금속물질로 개질된 광촉매를 이용한 톨루엔 광분해특성 연구)

  • Jang, Hyun Tae;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6952-6957
    • /
    • 2014
  • In photocatalysis, the addition of metal matter to $TiO_2$ can alter the surface properties. As such, the metal can increase the rate of the photodegradation reaction. In this study, a range of modified $TiO_2$ photocatalysts were prepared and tested to improve the activity of photodegradation at a batch-typed photoreactor. To obtain a good sol solution of the $TiO_2$ photocatalyst, several types of dispersion agents and stabilizers were investigated. The photocatalyst solutions were modified with isoproply alcohol as the dispersion agent and sodium silicate as the stabilizer. The effects of various metallic elements on enhancing the photocatalytic activity of $TiO_2$ on the degradation of toluene were examined. Palladium-added $TiO_2$ was found to be the best, whereas copper or tungsten-added also showed good results. In the case of palladium addition, the increase in removal efficiency was 25%. On the other hand, Fe-added $TiO_2$ showed a notable decrease in photocatalytic degradation. Additional doping of copper or tungsten on the $Pd/TiO_2$ had no positive effect on the photodegradation activity.

BTEX-contaminated Groundwater Remediation with Modified Fenton Reaction using Environmental Friendly Chelating Agent (친환경 착제가 적용된 modified Fenton 공정을 이용한 BTEX로 오염된 지하수의 복원)

  • Kwon, Yong-Jae;Jo, Young-Hoon;Jung, Jae-Gu;Kong, Sung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.52 no.5
    • /
    • pp.638-646
    • /
    • 2014
  • The effect of in-organic chelating agents with Fe(II) and Fe(III) in modified Fenton was evaluated to degradation BTEX (benzene, toluene, ethylbenzene, xylene). Citric acid and pyrophosphate were used in experimentals and an optimum chelating agent for BTEX degradation was determined. In $H_2O_2$/Fe(III)/citric acid, degradation of BTEX was decreased when concentration of citric acid was increased. In $H_2O_2$/Fe(III)/pyrophosphate, degradation of BTEX was increased when concentration of pyrophosphate was increased and degradation for BTEX was relatively high compared with $H_2O_2$/Fe(III)/citric acid. In $H_2O_2$/Fe(II)/chelating agents, degradation for BTEX was high and pH variation was minimized when molar ratio of Fe(II) and citric acid was 1:1. Optimum molar concentration of Fe(II), citric acid and $H_2O_2$ were 7 mM, 7mM and 500 mM for degradation of 100 mg/L of benzene to obtain best efficiency of $H_2O_2$, least precipitation of iron and best degradation.

Microbial Diversity of the Trichloroethylene Contaminated Groundwater Treatment System and Characterization of Pseudomonas sp. DHC8 (Trichloroethylene으로 오염된 지하수 제거공정의 미생물 다양성 및 분리균주 Pseudomonas sp. DHC8의 특성)

  • Nam, Ji-Hyun;Shin, Ji-Hye;Kwon, Kiwook;Bae, Wookeun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.49 no.4
    • /
    • pp.336-342
    • /
    • 2013
  • Trichloroethylene (TCE) is a widely used substance in commercial and industrial applications, yet it must be removed from the contaminated soil and groundwater environment due to its toxic and carcinogenic nature. We investigated bacterial community structure, dominant bacterial strain, and removal efficiency in a TCE contaminated groundwater treatment system using immobilized carrier. The microbial diversity was determined by the nucleotide sequences of 16S rRNA gene library. The major bacterial population of the contaminated groundwater treatment system was belonging to BTEX degradation bacteria. The bacterial community consisted mainly of one genus of Pseudomonas (Pseudomonas putida group). The domination of Pseudomonas putida group may be caused by high concentration of toluene and TCE. Furthermore, we isolated a toluene and TCE degrading bacterium, named Pseudomonas sp. DHC8, from the immobilized carrier in bioreactor which was designed to remove TCE from the contaminated ground water. Based on the results of morphological and physiological characteristics, and 16S rRNA gene sequence analysis, strain DHC8 was identified as a member of Pseudomonas putida group. When TCE (0.83 mg/L) and toluene (60.61 mg/L) were degraded by this strain, removal efficiencies were 72.3% and 100% for 12.5 h, respectively. Toluene removal rate was 2.89 ${\mu}mol/g$-DCW/h and TCE removal rate was 0.02 ${\mu}mol/g$-DCW/h. These findings will be helpful for maintaining maximum TCE removal efficiency of a reactor for bioremediation of TCE.

Biodegradation of VOC Mixtures using a Bioactive Foam Reactor II: Analysis of Microbial Community (계면활성제 미생물반응기의(혼합 VOCs) 생분해 II: 미생물의 군집해석)

  • Jang, Hyun Sup;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.695-701
    • /
    • 2006
  • A toluene-degrading bacterial strain was isolated from a mixed culture that was maintained using toluene as a sole carbon and energy source. The isolated bacterium was classified as Pseudomonas sp. TBD4 based on the close relationship to bacteria belonging to this genus. A bottle study to determine biodegradation rates of individual aromatic compounds showed that the biodegradation was faster in the order of toluene, benzene, styrene, and p-xylene. However, when various mixtures were subjected to TDB4, styrene was degraded at the highest rate, indicating that both toluene and p-xylene could stimulate the degradation of other substrates whereas styrene played as an inhibitor. In addition, the mixed culture and TDB4 were inoculated to the bioactive foam reactor (BFR), and the reactor performance and the corresponding change of microbial community were monitored using the fluorescent in situ hybridization (FISH) method. When an inlet concentration of the VOC mixture increased to greater than 250 ppm, the overall removal efficiency dropped significantly. The FISH measurement demonstrated that the ratio of TDB4 to the total bacteria also decreased to less than 20% along with the decline in removal efficiency in the BFR. As a result, the periodic addition of the pre-grown TDB4 might have been beneficial to achieve a stable performance in the BFR operated over an extended period.