• Title/Summary/Keyword: Toll-like receptors (TLR)

Search Result 100, Processing Time 0.026 seconds

Direct Regulation of TLR5 Expression by Caveolin-1

  • Lim, Jae Sung;Nguyen, Kim Cuc Thi;Han, Jung Min;Jang, Ik-Soon;Fabian, Claire;Cho, Kyung A
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1111-1117
    • /
    • 2015
  • Toll-like receptor 5 (TLR5) is a specific receptor for microbial flagellin and is one of the most well-known receptors in the TLR family. We reported previously that TLR5 signaling is well maintained during aging and that caveolin-1 may be involved in TLR5 signaling in aged macrophages through direct interactions. Therefore, it is important to clarify whether caveolin-1/TLR5 interactions affect TLR5 expression during aging. To assess the effect of caveolin-1 on TLR5, we analyzed TLR5 expression in senescent fibroblasts and aged tissues expressing high levels of caveolin-1. As expected, TLR5 mRNA and protein expression was well maintained in senescent fibroblasts and aged tissues, whereas TLR4 mRNA and protein were diminished in those cells and tissues. To determine the mechanism of caveolin-1-dependent TLR5 expression, we examined TLR5 expression in caveolin-1 deficient mice. Interestingly, TLR5 mRNA and protein levels were decreased dramatically in tissues from caveolin-1 knockout mice. Moreover, overexpressed caveolin-1 in vitro enhanced TLR5 mRNA through the MAPK pathway and prolonged TLR5 protein half-life through direct interaction. These results suggest that caveolin-1 may play a crucial role in maintaining of TLR5 by regulating transcription systems and increasing protein half-life.

Transcript Profiling of Toll-Like Receptor mRNAs in Selected Tissues of Mink (Neovison vison)

  • Tong, Mingwei;Yi, Li;Cheng, Yuening;Zhang, Miao;Cao, Zhigang;Wang, Jianke;Zhao, Hang;Lin, Peng;Yang, Yong;Cheng, Shipeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2214-2223
    • /
    • 2016
  • Toll-like receptors (TLRs) can recognize conserved molecular patterns and initiate a wide range of innate and adaptive immune responses against invading infectious agents. The aim of this study was to assess the transcript profile of mink TLRs (mTLRs) in mink peripheral blood mononuclear cells (PBMCs) and a range of tissues, and to explore the potential role of mTLRs in the antiviral immune response process. The results indicated that the mTLR partial nucleotide sequences had a high degree of nucleotide identity with ferret sequences (95-98%). Phylogenetic analysis showed that mammalian TLRs grouped into five TLR families, with a closer relationship of the mTLRs with those of ferret than the other mammalian sequences. Moreover, all the mTLRs were ubiquitously expressed in lymphoid organs (spleen and lymph nodes) and PBMCs. Interestingly, the mTLR expression patterns in lung, uterus, and heart showed quite a lot of similarity. Another remarkable observation was the wide expression of mTLR1-3 mRNAs in all tissues. Among the analyzed tissues, skeletal muscle was revealed to being the lowest repertoire of mTLR expression. Additionally, mink PBMCs exposed to the canine distemper virus revealed significant upregulation of mTLR2, mTLR4, mTLR7, and mTLR8 mRNAs, indicating that mTLRs have a role in innate immunity in the mink. Collectively, our results are the first to establish the basic expression patterns of mTLRs and the relationship between mTLRs and a virus, which will contribute to better understanding of the evolution and the functions of mTLRs in the innate immune system in minks.

Toll-like Receptor 4 Polymorphism and Periodontitis in Korean Population

  • Park, Ok-Jin;Shin, Seung-Yun;Chung, Chong-Pyoung;Ku, Young;Choi, Young-Nim;Kim, Kack-Kyun
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • The primary cause of periodontitis is plaque-associated anaerobic gram-negative bacteria. As shown in the patients with defects in the number or function of neutrophils, innate immunity plays an important role in resistance to bacterial infection and periodontitis. Toll-like receptor 4(TLR4) is one of the key receptors that recognize the molecular patterns of microbes and initiate innate immune response. To understand the role of TLR4 in the pathogenesis of periodontitis, we investigated whether Asp299Gly of TLR4 mutation is associated with periodontitis in Korean population. Subjects for this study included 90 healthy subjects and 98 periodontitis patients. The Asp299Gly mutation was screened by PCR-Restriction Fragment Length Polymorphism(RFLP) of genomic DNA from blood cells using a primer that creates a NcoI restriction site only in the mutant allele. The Asp299Gly mutation was not found in all subjects tested. Our results suggest that the Asp299Gly mutation of TLR4 is very rare in a Korean population. Further mutation screening may be required to determine the role of TLR4 in the pathogenesis of periodontitis.

Acrolein with an α,β-unsaturated Carbonyl Group Inhibits LPS-induced Homodimerization of Toll-like Receptor 4

  • Lee, Jeon-Soo;Lee, Joo Young;Lee, Mi Young;Hwang, Daniel H.;Youn, Hyung Sun
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.253-257
    • /
    • 2008
  • Acrolein is a highly electrophilic ${\alpha},{\beta}$-unsaturated aldehyde present in a number of environmental sources, especially cigarette smoke. It reacts strongly with the thiol groups of cysteine residues by Michael addition and has been reported to inhibit nuclear $factor-{\kappa}B$ ($NF-{\kappa}B$) activation by lipopolysaccharide (LPS). The mechanism by which it inhibits $NF-{\kappa}B$ is not clear. Toll-like receptors (TLRs) play a key role in sensing microbial components and inducing innate immune responses, and LPS-induced dimerization of TLR4 is required for activation of downstream signaling pathways. Thus, dimerization of TLR4 may be one of the first events involved in activating TLR4-mediated signaling pathways. Stimulation of TLR4 by LPS activates both myeloid differential factor 88 (MyD88)- and TIR domain-containing adapter inducing $IFN{\beta}$ (TRIF)-dependent signaling pathways leading to activation of $NF-{\kappa}B$ and IFN-regulatory factor 3 (IRF3). Acrolein inhibited $NF-{\kappa}B$ and IRF3 activation by LPS, but it did not inhibit $NF-{\kappa}B$ or IRF3 activation by MyD88, inhibitor ${\kappa}B$ kinase $(IKK){\beta}$, TRIF, or TNF-receptor-associated factor family member-associated $NF-{\kappa}B$ activator (TANK)-binding kinase 1 (TBK1). Acrolein inhibited LPS-induced dimerization of TLR4, which resulted in the down-regulation of $NF-{\kappa}B$ and IRF3 activation. These results suggest that activation of TLRs and subsequent immune/inflammatory responses induced by endogenous molecules or chronic infection can be modulated by certain chemicals with a structural motif that enables Michael addition.

Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2

  • Lee, Jin Young;Lee, Byung Ho;Lee, Joo Young
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.11-16
    • /
    • 2015
  • Our body's immune system has defense mechanisms against pathogens such as viruses and bacteria. Immune responses are primarily initiated by the activation of toll-like receptors (TLRs). In particular, TLR4 is well-characterized and is known to be activated by gram-negative bacteria and tissue damage signals. TLR4 requires myeloid differentiation factor 2 (MD2) as a co-receptor to recognize its ligand, lipopolysaccharides (LPS), which is an extracellular membrane component of gram-negative bacteria. Gambogic acid is a xanthonoid isolated from brownish or orange resin extracted from Garcinia hanburyi. Its primary effect is tumor suppression. Since inflammatory responses are related to the development of cancer, we hypothesized that gambogic acid may regulate TLR4 activation. Our results demonstrated that gambogic acid decreased the expression of pro-inflammatory cytokines ($TNF-{\alpha}$, IL-6, IL-12, and $IL-1{\beta}$) in both mRNA and protein levels in bone marrow-derived primary macrophages after stimulation with LPS. Gambogic acid did not inhibit the activation of Interferon regulatory factor 3 (IRF3) induced by TBK1 overexpression in a luciferase reporter gene assay using IFN-${\beta}$-PRD III-I-luc. An in vitro kinase assay using recombinant TBK1 revealed that gambogic acid did not directly inhibit TBK1 kinase activity, and instead suppressed the binding of LPS to MD2, as determined by an in vitro binding assay and confocal microscopy analysis. Together, our results demonstrate that gambogic acid disrupts LPS interaction with the TLR4/MD2 complex, the novel mechanism by which it suppresses TLR4 activation.

Helper T Cell Polarizing Through Dendritic Cells (수지상세포를 통한 조력 T세포의 분화 - 알레르기 질환을 중심으로 -)

  • Han, Manyong
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • In the last few years, a spectrum of dendritic cells(DCs), including toll like receptors(TLRs), might play a critical role in regulating allergy and asthma. DC plays a central role in initiating immune responses, linking innate and adaptive responses to pathogen. Human peripheral blood has three non-overlapping dendritic subset that expressed various 11 TLRs. These dendritic subsets and TLR contribute significant polarizing influences on T helper differentiation, but how this comes about is less clear. A better understanding of DC immunobiology may lead to the comprehension of allergy pathophysiology to prevent early stage allergic march.

Innate immune recognition of respiratory syncytial virus infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.184-191
    • /
    • 2014
  • Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.3
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

Expression of Toll-like Receptor 9 Increases with Progression of Cervical Neoplasia in Tunisian Women - A Comparative Analysis of Condyloma, Cervical Intraepithelial Neoplasia and Invasive Carcinoma

  • Fehri, Emna;Ennaifer, Emna;Ardhaoui, Monia;Ouerhani, Kaouther;Laassili, Thalja;Rhouma, Rahima Bel Haj;Guizani, Ikram;Boubaker, Samir
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6145-6150
    • /
    • 2014
  • Toll-like receptors (TLRs) are expressed in immune and tumor cells and recognize pathogen-associated molecular patterns. Cervical cancer (CC) is directly linked to a persistent infection with high risk human papillomaviruses (HR-HPVs) and could be associated with alteration of TLRs expression. TLR9 plays a key role in the recognition of DNA viruses and better understanding of this signaling pathway in CC could lead to the development of novel immunotherapeutic approaches. The present study was undertaken to determine the level of TLR9 expression in cervical neoplasias from Tunisian women with 53 formalin-fixed and paraffin-embedded specimens, including 22 samples of invasive cervical carcinoma (ICC), 18 of cervical intraepithelial neoplasia (CIN), 7 of condyloma and 6 normal cervical tissues as control cases. Quantification of TLR9 expression was based on scoring four degrees of extent and intensity of immunostaining in squamous epithelial cells. TLR9 expression gradually increased from CIN1 (80% weak intensity) to CIN2 (83.3% moderate), CIN3 (57.1% strong) and ICC (100% very strong). It was absent in normal cervical tissue and weak in 71.4% of condyloma. The mean scores of TLR9 expression were compared using the Kruskall-Wallis test and there was a statistical significance between normal tissue and condyloma as well as between condyloma, CINs and ICC. These results suggest that TLR9 may play a role in progression of cervical neoplasia in Tunisian patients and could represent a useful biomarker for malignant transformation of cervical squamous cells.

Effect of CD14, Toll-like receptors, cytoskeletal inhibitors and $NF-{\kappa}B$ inhibitor on MMP-8 release from human neutrophils induced by E. coli lipopolysaccharides. (E. coli lipopolysaccharides로 유도된 사람 호중구에서 CD14, Toll-like receptors, cytoskeletal inhibitors 그리고 $NF-{\kappa}B$ inhibitor가 MMP-8 분비에 미치는 영향)

  • Yang, Seung-Min;Kim, Tae-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Chung, Chong-Pyoung;Han, Soo-Boo;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.2
    • /
    • pp.427-436
    • /
    • 2005
  • Objective: MMP-8 is a neutrophil enzyme and its level increases in some inflammatory diseases, including periodontal disease. We knew that the lipopolysaccharide of E.coli(E-LPS) induced MMP-8 release from human neutrophils. E-LPS is known to induce the production and release of inflammatory cytokines through CD14, Toll-like receptor(TLR). In the present study, we investigated whether MMP-8 release by E-LPS is induced via CD14-TLR pathway and the cellular mechanism of MMP-8 release in human neutrophils. Material and methods: Human neutrophils were isolated from the peripheral blood of healthy donors and pre-incubated in medium containing antibodies against CD14, anti-TLR2 and anti-TLR4 or several inhibitors of microtubules and microfilaments and then incubated with E-LPS. The cells were treated TPCK and E-LPS simultaneously. The MMP-8amount in the culture medium was determined using ELISA. Results: E-LPS increased MMP-8release from neutrophils and its induction was inhibited by anti-CD14 and anti-TLR4 but not by anti-TLR2 antibodies. The inhibitors of microtubule and microfilament polymerization significantly decreased E-LPS-induced MMP-8release. TPCK inhibited E-LPS-induced MMP-8 release. Conclusion: These results suggest that MMP-8 release is induced by E-LPS via the CD14-TLR4 signal pathway in human neutrophils and may be depedent on microtubule and microfilament systems and $NF-{\kappa}B$ pathway.