• 제목/요약/키워드: Toll-like receptor 4

검색결과 220건 처리시간 0.02초

부인과질환 특이적 종양의 TLR4 매개성 apoptosis 유발에 관한 연구 (Toll-like Receptor 4-mediated Apoptotic Cell Death in Primary Isolated Human Cervical Cancers)

  • 원진영;홍윤경;박수경;김주헌;홍용근
    • 생명과학회지
    • /
    • 제28권6호
    • /
    • pp.718-725
    • /
    • 2018
  • Toll 유사수용체의 TLR4는 세포자연사(apoptosis)와 관련하여 세포의 생존과 증식에 영향을 미치는 것으로 알려져 있다. 본 연구에서는 TLR4의 활성이 부인과 질환 특이적 종양세포의 세포사멸기작에 어떠한 영향을 미치는지 살펴보았다. TLR4의 활성에 의한 세포자연사를 확인하기 위하여 부인암 조직(자궁경부암, 자궁내막암, 난소암)에서 종양세포를 분리하여 초대배양시스템을 구축하였고, lipopolysaccharide (LPS)에 의한 TLR4의 활성유도 과정에서 종양세포의 형태학적 변화를 살펴보았다. 또한, TLR4 매개성 세포사멸 기작을 확인하기 위하여 역전사 중합효소 연쇄반응(RT-PCR)을 통해 유전자 분석을 진행하였다. 연구 결과, 부인암의 초대배양세포에서 세포접촉저지(contact inhibition)현상이 감소되었고, 세포의 배가시간(doubling time)이 단축되어, 종양세포의 성장률 변화를 확인하였다(p<0.05). 자궁근육층(정상조직)의 초대배양세포에서는 민무늬근육 확인 인자인 ITGA5 (an alpha5 integrin marker)의 유전자 발현이 나타났으나, 자궁경부조직의 초대배양세포에서는 발현변화를 확인할 수 없었다. 종양세포의 유전자분석 결과에서 p53과 같은 종양억제인자의 발현이 유의적으로 증가한 반면(p<0.05), 세포사멸 신호기작과 관련하여 TLR4와 Caspase-3의 발현은 감소하였다(Caspase-3, p<0.05). LPS를 처리한 종양세포에서는 LPS 비처리군과 비교 시, TLR4의 발현증가와 함께 Caspase-3의 발현변화가 동반되었다. 이러한 결과들은 TLR4 매개성 apoptosis 유도가 종양세포의 증식억제에 중요한 영향을 미치는 것을 의미하며, TLR4 신호기작을 이용한 종양세포의 새로운 치료적 접근법을 제시할 것으로 기대한다.

A preliminary study of the anti-inflammatory activities of the Japanese oak silk moth, Antheraea yamamai

  • Park, Seung-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제45권1호
    • /
    • pp.17-21
    • /
    • 2022
  • The present study aimed to determine whether a hemolymph prepared from Antheraea yamamai larvae had the same biological activities using a Bombyx mori hemolymph prior to exposure to lipopolysaccharide (LPS) in order to induce an inflammatory response. The effects of the hemolymph were determined using a reverse transcription-quantitative polymerase chain reaction to assess the expression of pro-inflammatory molecules. The A. yamamai hemolymph exerted anti-inflammatory effects on LPS-activated human monocytic leukemia cells via Toll-like receptor (TLR) 4-mediated suppression, similar to the B. mori hemocyte extract. Treatment with the A. yamamai hemolymph significantly suppressed LPS-induced upregulated inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) mRNA expression at all tested concentrations compared with the control, similar to the B. mori immune-challenged hemolymph. Finally, the A. yamamai hemolymph, like the B. mori immune-challenged hemolymph, suppressed all of these concentrations in a dose-independent manner. These results demonstrate that the hemolymph of A. yamamai exhibited important biologically active substances. Further in-depth functional studies are required to fully understand the mechanisms underlying the biological activities of wild-type silkworm hemolymphs.

Toll-like Receptor 2 유전자의 Microsatellite 유전자 다형성과 만성폐쇄성폐질환 발생과의 연관성 결여 (Lack of the Association between Microsatellite Polymorphism in Toll-like Receptor 2 Gene and Development of COPD)

  • 이희석;이혜원;김덕겸;고동석;박근민;황용일;이상민;유철규;김영환;한성구;심영수;임재준
    • Tuberculosis and Respiratory Diseases
    • /
    • 제58권4호
    • /
    • pp.367-374
    • /
    • 2005
  • 연구배경 : 장기간 흡연을 하는 사람의 10-20%에서만 COPD가 발생한다는 사실은 COPD의 발생에 유전적 인자가 관여함을 시사한다. 최근 surfactant protein A가, COPD의 병인에 중요한 역할을 하는 것으로 알려진 MMP-9의 분비를 TLR2를 통해 증가시킨다고. 그러므로 COPD의 병인에 TLR2이 역할을 할 수 있을 것이라는 가정 아래, TLR2 유전자의 intron II에 존재하는 Guanine-Thymine (GT)의 반복으로 이루어진 유전자다형성과 한국인에서의 COPD의 발생과의 연관성을 규명하고자 하였다. 방 법 : 흡연력이 있는 남자 COPD 환자와 정상 폐기능을 보이는 남자 흡연자를 대상으로 하여, TLR2 유전자의 intron II의 GT 반복횟수를 확인하였다. 그 GT 반복이 3상성의 분포를 보여 이들을 다시 세 개의 맞섬 유전자 아형으로 분류하여 분석하였다. (12-16회 GT 반복: 짧은 아형; 17-22회 반복: 중간 아형; 23-27회 반복: 긴 아형) 결 과 : 각각의 맞섬유전자 아형의 분포는 125명의 COPD군과 144명의 대조군 사이에 유의한 차이는 없었다(P=0.75). 또한 각각의 맞섬유전자 아형의 유무에 따른 유전형의 빈도도 두 군간의 차이는 관찰할 수 없었다. 결 론 : TLR2 유전자의 intron II에 존재하는 GT 반복으로 이루어진 유전자다형성은 한국인에서 COPD의 발생과 연관되어 있지 않다.

Genomic Analyses of Toll-like Receptor 4 and 7 Exons of Bos indicus from Temperate Sub-himalayan Region of India

  • Malik, Y.P.S.;Chakravarti, S.;Sharma, K.;Vaid, N.;Rajak, K.K.;Balamurugan, V.;Biswas, S.K.;Mondal, B.;Kataria, R.S.;Singh, R.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권7호
    • /
    • pp.1019-1025
    • /
    • 2011
  • Toll-like receptors (TLRs) play an important role in the recognition of invading pathogens and the modulation of innate immune responses in mammals. The TLR4 and TLR7 are well known to recognize the bacterial lipopolysaccharide (LPS) and single stranded (ssRNA) ligands, respectively and play important role in host defense against Gram-negative bacteria and ssRNA viruses. In the present study, coding exon fragments of these two TLRs were identified, cloned, sequenced and analyzed in terms of insertion-deletion polymorphism, within bovine TLRs 4 and 7, thereby facilitating future TLR signaling and association studies relevant to bovine innate immunity. Comparative sequence analysis of TLR 4 exons revealed that this gene is more variable, particularly the coding frame (E3P1), while other parts showed percent identity of 95.7% to 100% at nucleotide and amino acid level, respectivley with other Bos indicus and Bos taurus breeds from different parts of the world. In comparison to TLR4, sequence analysis of TLR7 showed more conservation among different B. indicus and B. taurus breeds, except single point mutation at 324 nucleotide position (AAA to AAM) altering a single amino acid at 108 position (K to X). Percent identity of TLR7 sequences (all 3 exons) was between 99.2% to 100% at nucleotide and amino acid level, when compared with available sequence database of B. indicus and B. taurus. Simple Modular Architecture Research Tool (SMART) analysis showed variations in the exon fragments located in the Leucine Rich Repeat (LRR) region, which is responsible for binding with the microbial associated molecular patterns and further, downstream signaling to initiate anti-microbial response. Considering importance of TLR polymorphism in terms of innate immunity, further research is warranted.

Immunomodulating Activity of Fungal $\beta$-Glucan through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2006년도 Proceedings of The Convention
    • /
    • pp.103-115
    • /
    • 2006
  • $\beta$-Glucan is a glucose polymer that has linkage of $\beta$-(1,3), -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, $\beta$-glucans are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding $\beta$-glucan as pathogen-associated molecular pattern (PAMP). Recently $\beta$-glucan receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-1 is consisted of 7 exons and 6 introns. The polypeptide of dectin-1 has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-1 could recognize variety of beta-1,3 and/or beta-1,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-1 mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-1 was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with $\beta$-glucans of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and TNF-$\alpha$ in the presence of LPS. However, GLG alone did not increase IL-6 nor TNF-$\alpha$. These results suggest that receptor dectin-1 cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Immunomodulating Activity of Fungal ${\beta}-Glucan$ through Dectin-1 and Toll-like Receptor on Murine Macrophage

  • Kim, Ha-Won
    • 한국약용작물학회:학술대회논문집
    • /
    • 한국약용작물학회 2006년도 Proceedings of The Convention of The Korean Society of Applied Pharmacology
    • /
    • pp.103-115
    • /
    • 2006
  • [ ${\beta}-Glucan$ ] is a glucose polymer that has linkage of ${\beta}-(1,3)$, -(1,4) and -(1,6). As exclusively found in fungal and bacterial cell wall, not in animal, ${\beta}-glucans$ are recognized by innate immune system. Dendritic cells (DC) or macrophages possesses pattern recognition molecule (PRM) for binding ${\beta}-glucans$ as pathogen-associated molecular pattern (PAMP). Recently ${\beta}-glucans$ receptor was cloned from DC and named as dectin-l which belongs to type II C-type lectin family. Human dectin-l is consisted of 7 exons and 6 introns. The polypeptide of dectin-l has 247 amino acids and has cytoplasmic, transmembrane, stalk and carbohydrate recognition domains. Dectin-l could recognize variety of beta-l,3 and/or beta-l,6 glucan linkages, but not alpha-glucans. In our macrophage cell line culture system, dectin-l mRNA was detected in RA W264.7 cells by reverse transcription-polymerase chain reaction (RT-PCR). Dectin-l was also detected in the murine organs of spleen, thymus, lung and intestines. Treatment of RA W264.7 cells with ${\beta}-glucans$ of Ganoderma lucidum (GLG) resulted in increased expression of IL-6 and $TNF-{\alpha}$ in the presence of LPS. However, GLG alone did not increase IL-6 nor $TNF-{\alpha}$ These results suggest that receptor dectin-l cooperate with CD14 to activate signal transduction that is very critical in immunoresponse.

  • PDF

Phenethyl Isothiocyanate가 Toll-like Receptor Agonists에 의해 유도된 Nuclear Factor-κB 활성과 Cyclooxygenase-2, Inducible Nitric Oxide Synthase 발현에 미치는 효과 (The Effects of Phenethyl Isothiocyanate on Nuclear Factor-κB Activation and Cyclooxygenase-2 and Inducible Nitric Oxide Synthase Expression Induced by Toll-like Receptor Agonists)

  • 김수정;박혜정;신화정;김지수;안희진;민인순;윤형선
    • Journal of Applied Biological Chemistry
    • /
    • 제54권4호
    • /
    • pp.279-283
    • /
    • 2011
  • 염증의 중요한 분자학적 기전에는 cyclooxygenase-2 (COX-2)에 의한 prostaglandins (PGs) 생성과 inducible nitric oxide synthase (iNOS)에 의한 nitric oxide (NO) 생성이 있다. 많은 종류의 박테리아나 바이러스가 전사요소인 nuclear factor-${\kappa}$B(NF-${\kappa}$B)를 활성화시켜 여러 타깃 유전자의 발현을 조절해 PGs나 NO와 같은 염증물질을 유도하게 된다. 우리는 이번 실험을 통하여 phenethyl isothiocyanate (PEITC)가 toll-like receptor(TLR) agonists에 의해 유도된 NF-${\kappa}$B활성과 COX-2, iNOS 발현에 어떠한 영향을 미치는지 알아 보았다. PEITC는 lipopolysaccharide (LPS)와 polyinosinic-polycytidylic acid (poly[I:C])에 의해 유도된 NF-${\kappa}$B활성을 억제시켰다. 또한 PEITC는 LPS와 Poly[I:C]에 의해 유도된 iNOS의 발현도 억제시켰다. 하지만 PEITC는 TLR agonists들인 LPS, Poly[I:C], 2 kDa macrophage-activating lipopeptide (MALP-2), oligodeoxynucleotide 1668 (ODN1668)에 의한 COX-2 발현은 억제시키지 못하였다. 즉 PEITC가 TRIF-dependent 신호전달체계만을 조절하여 TRIF-dependent 신호전달체계에 의해 조절되는 iNOS는 억제하지만 MyD88-dependent 신호전달 체계에 의해 조절되는 COX-2는 억제하지 못한다는 것을 설명해준다. 이러한 결과는 iNOS와 COX-2가 서로 다른 메커니즘에 의해 조절된다는 것을 암시하며, PEITC가 여러 병원균들로부터 유도되는 염증반응이나 만성적인 질병들을 조절할 수 있음을 제시하는 중요한 결과이다.

Expression of Toll-like Receptors, Pro-, and Anti-inflammatory Cytokines in Relation to Gut Microbiota in Irritable Bowel Syndrome: The Evidence for Its Micro-organic Basis

  • Shukla, Ratnakar;Ghoshal, Ujjala;Ranjan, Prabhat;Ghoshal, Uday C
    • Journal of Neurogastroenterology and Motility
    • /
    • 제24권4호
    • /
    • pp.628-642
    • /
    • 2018
  • Background/Aims A Subset of patients with irritable bowel syndrome (IBS) may have mild inflammation due to immune activation. Toll-like receptors (TLRs) and cytokines may cause intestinal inflammation. We studied their expression in relation to gut microbiota. Methods Expression of TLRs and cytokines was assessed in 47 IBS patients (Rome III) and 25 controls using quantitative real-time polymerase chain reaction. Immunohistochemistry was further performed to confirm the expression of TLR-4 and TLR-5. Results Of 47 patients with IBS, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and 7 unclassified (IBS-U). The mRNA levels of TLR-4 and TLR-5 were up-regulated in IBS patients than controls (P = 0.013 and P < 0.001, respectively). Expression of TLR-4 and TLR-5 at protein level was 4.2-folds and 6.6-folds higher in IBS-D than controls. The mRNA levels of IL-6 (P = 0.003), C-X-C motif chemokine ligand 11 (CXCL-11) (P < 0.001) and C-X-C motif chemokine receptor 3 (CXCR-3) (P < 0.001) were higher among IBS patients than controls. Expression of IL-6 (P = 0.002), CXCL-11 (P < 0.001), and CXCR-3 (P < 0.001) were up-regulated and IL-10 (P = 0.012) was down-regulated in IBS-D patients than controls. Positive correlation was seen between TLR-4 and IL-6 (P = 0.043), CXCR-3, and CXCL-11 (P = 0.047), and IL-6 and CXCR-3 (P = 0.003). Stool frequency per week showed positive correlation with mRNA levels of TLR-4 (P = 0.016) and CXCR-3 (P = 0.005), but inversely correlated with IL-10 (P = 0.002). Copy number of Lactobacillus (P = 0.045) and Bifidobacterium (P = 0.011) showed correlation with IL-10 in IBS-C, while Gram-positive (P = 0.031) and Gram-negative bacteria (P = 0.010) showed correlation with CXCL-11 in IBS-D patients. Conclusions Altered immune activation in response to dysbiotic microbiota may promote intestinal inflammation in a subset of patients with IBS.

진피로부터 분리한 다당의 대식세포를 통한 면역증진 효과 (Immuno-Enhancing Effects through Macrophages of Polysaccharides Isolated from Citrus Peels)

  • 이경애;박혜령
    • 한국식품영양학회지
    • /
    • 제34권5호
    • /
    • pp.441-448
    • /
    • 2021
  • This study was designed to investigate the intracellular signaling pathways and immunoenhancing effect of macrophage activation by crude polysaccharides (CPP) extracted from citrus peels. CPP did not affect the cytotoxicity of RAW264.7 cells, but showed dose-dependent effects on cell viability. Also, CPP showed high production of chemokine (nitric oxide (NO)) and cytokines (interleukin (IL)-6 and tumor necrosis factor (TNF)-α). CPP increased IL-6, TNF-α, and inducible nitric oxide synthase (iNOS) mRNA expression dose-dependently. CPP also strongly induced the phosphorylation of the ERK, p38, and IκBα pathways in RAW 264.7 cells. In anti-pattern recognition receptors (PRRs) experiments, the effect of CPP on NO production was strongly suppressed by neutralizing toll-like receptor (TLR)2, TLR4, and Dectin1 antibodies, whereas IL-6 and TNF-α production by CPP was mainly suppressed by mannose receptor (MR). Therefore, these results suggest that CPP treatment-induced NO production was regulated by the ERK, p38, and NF-κB pathways through TLR2, TLR4, and Dectin1 receptors, whereas IL-6 and TNF-α production was primarily regulated by the ERK, p38, and NF-κB pathways through MR receptors.

The Early Induction of Suppressor of Cytokine Signaling 1 and the Downregulation of Toll-like Receptors 7 and 9 Induce Tolerance in Costimulated Macrophages

  • Lee, Hyo-Ji;Kim, Keun-Cheol;Han, Jeong A;Choi, Sun Shim;Jung, Yu-Jin
    • Molecules and Cells
    • /
    • 제38권1호
    • /
    • pp.26-32
    • /
    • 2015
  • Toll-like receptors (TLR) 7 and 9 transduce a cellular signal through the MyD88-dependent pathway and induce the production of inflammatory mediators against microbial nucleotide components. The repeated stimulation of TLR4 leads to endotoxin tolerance, but the molecular mechanisms of tolerance induced through the costimulation of individual TLR has not yet been established, although endosomal TLRs share signaling pathways with TLR4. In the present study, mouse macrophages were simultaneously stimulated with the TLR7 agonist, gardiquimod (GDQ), and the TLR9 agonist, CpG ODN 1826, to examine the mechanism and effector functions of macrophage tolerance. Compared with individual stimulation, the costimulation of both TLRs reduced the secretion of TNF-${\alpha}$ and IL-6 through the delayed activation of the NF-${\kappa}B$ pathway; notably, IL-10 remained unchanged in costimulated macrophages. This tolerance reflected the early induction of suppressor of cytokine signaling-1 (SOCS-1), according to the detection of elevated TNF-${\alpha}$ secretion and restored NF-${\kappa}B$ signaling in response to the siRNA-mediated abrogation of SOCS-1 signaling. In addition, the restimulation of each TLRs using the same ligand significantly reduced the expression of both TLRs in endosomes. These findings revealed that the costimulation of TLR7 and TLR9 induced macrophage tolerance via SOCS-1, and the restimulation of each receptor or both TLR7 and TLR9 downregulated TLR expression through a negative feedback mechanisms that protects the host from excessive inflammatory responses. Moreover, the insufficient and impaired immune response in chronic viral infection might also reflect the repeated and simultaneous stimulation of those endosomal TLRs.