• 제목/요약/키워드: Toll-like Receptor 4

검색결과 220건 처리시간 0.03초

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

Reactive Oxygen Species-Induced Expression of B cell Activating Factor (BAFF) Is Independent of Toll-like Receptor 4 and Myeloid Differentiation Primary Response Gene 88

  • Kim, Hyun-Sun;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.144-150
    • /
    • 2009
  • Reactive oxygen species play a role in signal transduction and in many human diseases. B-cell activating factor (BAFF) plays a role for mature B cell generation and maintenance and for the incidence of autoimmune diseases. We previously reported that BAFF expression was induced by ROS. In this study, we investigated whether ROS-induced BAFF expression was affected by toll-like receptor (TLR) 4 or myeloid differentiation primary response gene (MyD) 88. BAFF expression was increased by serum deprivation that is an experimental modification to produce ROS. In contrast, TLR4 and MyD88 were decreased by serum deprivation. Although ROS production was decreased in TLR4-nonfunctional or MyD88-deficient splenocytes as compared to that in control mice, serum deprivation increased ROS production and augmented BAFF expression in both cells. $50{\mu}M\;H_2O_2$ also increased BAFF expression in TLR4-deficient or MyD88-deficient splenocytes. Collectively, results show that BAFF expression may be mediated by TLR4 or MyD88-independent manner and TLR4 or MyD88 may not be required in BAFF expression.

Role of microglial activation on neuronal excitability in rat substantia gelatinosa

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • 제45권4호
    • /
    • pp.225-231
    • /
    • 2020
  • Glial cells, including astrocytes and microglia, interact closely with neurons and modulate pain transmission, particularly under pathological conditions. In this study, we examined the excitability of substantia gelatinosa (SG) neurons of the spinal dorsal horn using a patch clamp recording to investigate the roles of microglial activation in the nociceptive processes of rats. We used xanthine/xanthine oxidase (X/XO), a generator of superoxide anion (O2·-), to induce a pathological pain condition. X/XO treatment induced an inward current and membrane depolarization. The inward current was significantly inhibited by minocycline, a microglial inhibitor, and fluorocitrate, an astrocyte inhibitor. To examine whether toll-like receptor 4 (TLR4) in microglia was involved in the inward current, we used lipopolysaccharide (LPS), a highly specific TLR4 agonist. The LPS induced inward current, which was decreased by pretreatment with Tak-242, a TLR4-specific inhibitor, and phenyl N-t-butylnitrone, a reactive oxygen species scavenger. The X/XO-induced inward current was also inhibited by pretreatment with Tak-242. These results indicate that the X/XO-induced inward current of SG neurons occurs through activation of TLR4 in microglial cells, suggesting that neuroglial cells modulate the nociceptive process through central sensitization.

Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis

  • Song, Sang-Kee
    • BMB Reports
    • /
    • 제49권12호
    • /
    • pp.693-698
    • /
    • 2016
  • In this study, a tissue-specific GAL4/UAS activation tagging system was used for the characterization of genes which could induce lethality when ubiquitously expressed. A dominant mutant exhibiting stunted growth was isolated and named defective root development 1-D (drd1-D). The T-DNA tag was located within the promoter region of AtTX12, which is predicted to encode a truncated nucleotide-binding leucine-rich repeat (NLR) protein, containing a Toll/interleukin-1 receptor (TIR) domain. The transcript levels of AtTX12 and defense-related genes were elevated in drd1-D, and the misexpression of AtTX12 recapitulated the drd1-D phenotypes. In the presence of ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1), a key transducer of signals triggered by TIR-type NLRs, a low-level of AtTX12 misexpression induced strong defective phenotypes including seedling lethality whereas, in the absence of EDS1, a high-level of AtTX12 misexpression induced weak growth defects like dwarfism, suggesting that AtTX12 might function mainly in an EDS1-dependent and partially in an EDS1-independent manner.

Association of Toll-Like Receptor 5 Gene Polymorphism with Susceptibility to Ossification of the Posterior Longitudinal Ligament of the Spine in Korean Population

  • Chung, Won-Suk;Nam, Dong-Hyun;Jo, Dae-Jean;Lee, Jun-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • 제49권1호
    • /
    • pp.8-12
    • /
    • 2011
  • Objective: Ossification of the posterior longitudinal ligament (OPLL) has a strong genetic component. Specific gene polymorphisms may be associated with OPLL in several genes which regulate calcification in chondrocytes, change of extracellular collagen matrix and secretions of many growth factors and cytokines controlling bone morphogenesis. Toll-like receptor 5 (TLR5) may playa role in the pathogenesis of OPLL by intermediate nuclear factor-kappa B (NF-${\kappa}B$). The current study focused on coding single nucleotide polymorphisms (SNPs) of TLR5 for a case-control study investigating the relationship between TLR5 and OPLL in a Korean population. Methods: A total of 166 patients with OPLL and 231 controls were recruited for a case-control association study investigating the relationship between SNPs of TLR5 gene and OPLL. Four SNPs were genotyped by direct sequencing (rs5744168, rs5744169, rs2072493, and rs5744174). SNP data were analyzed using the SNPStats, SNPAnalyzer, Haploview, and Helixtree programs. Multiple logistic regression analysis with adjustment for age and gender was performed to calculate an odds ratio (OR). Results: None of SNPs were associated with OPLL in three alternative models (codominant, dominant, and recessive models; p> 0.05). A strong linkage disequilibrium block, including all 4 SNPs, was constructed using the Gabriel method. No haplotype was significantly associated with OPLL in three alternative models. Conclusion: These results suggest that Toll-like receptor 5 gene may not be associated with ossification of the posterior longitudinal ligament risk in Korean population.

Lysate of Probiotic Lactobacillus plantarum K8 Modulate the Mucosal Inflammatory System in Dextran Sulfate Sodium-induced Colitic Rats

  • Ahn, Young-Sook;Park, Min Young;Shin, Jae-Ho;Kim, Ji Yeon;Kwon, Oran
    • 한국축산식품학회지
    • /
    • 제34권6호
    • /
    • pp.829-835
    • /
    • 2014
  • Inflammatory bowel disease (IBD) is caused by dysregulation of colon mucosal immunity and mucosal epithelial barrier function. Recent studies have reported that lipoteichoic acid (LTA) from Lactobacillus plantarum K8 reduces excessive production of pro-inflammatory cytokine. In this study, we investigated the preventive effects of lysate of Lb. plantarum K8 in dextran sulfate sodium (DSS)-induced colitis. Male Sprague-Dawley rats were orally pretreated with lysate of Lb. plantarum K8 (low dose or high dose) or live Lb. plantarum K8 prior to the induction of colitis using 4% DSS. Disease progression was monitored by assessment of disease activity index (DAI). Histological changes of colonic tissues were evaluated by hematoxylin and eosin (HE) staining. Tumor necrosis factor-alpha (TNF-${\alpha}$), interleukin-6 (IL-6) levels were measured using enzyme-linked immunosorbent assay (ELISA). The colon mRNA expressions of TNF-${\alpha}$, IL-6, and toll like receptor-2 (TLR-2) were examined by quantitative real-time-transcription polymerase chain reaction (qPCR). Lysate of Lb. plantarum K8 suppressed colon shortening, edema, mucosal damage, and the loss of DSS-induced crypts. The groups that received lysate of Lb. plantarum K8 exhibited significantly decreased levels of the pro-inflammatory cytokines TNF-${\alpha}$ and IL-6 in the colon. Interestingly, colonic expression of toll like receptor-2 mRNA in the high-dose lysate of Lb. plantarum K8 group increased significantly. Our study demonstrates the protective effects of oral lysate of Lb. plantarum K8 administration on DSS-induced colitis via the modulation of pro-inflammatory mediators of the mucosal immune system.

Hepatoprotective effect of ultrasonicated ginseng berry extract on a rat mild bile duct ligation model

  • Nam, Yoonjin;Ko, Sung Kwon;Sohn, Uy Dong
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.606-617
    • /
    • 2019
  • Background: The Panax ginseng berry extract (GBE) is well known to have an antidiabetic effect. The aim of this study is to evaluate and investigate the protective effect of ultrasonication-processed P. ginseng berry extract (UGBE) compared with GBE on liver fibrosis induced by mild bile duct ligation (MBDL) model in rats. After ultrasonication process, the composition ratio of ginsenoside in GBE was changed. The component ratio of ginsenosides Rh1, Rh4, Rg2, Rg3, Rk1, Rk3, and F4 in the extract was elevated. Methods: In this study, the protective effect of the newly developed UGBE was evaluated on hepatotoxicity and neuronal damage in MBDL model. Silymarin (150 mg/kg) was used for positive control. UGBE (100 mg/kg, 250 mg/kg, 500 mg/kg), GBE (250 mg/kg), and silymarin (150 mg/kg) were orally administered for 6 weeks after MBDL surgery. Results: The MBDL surgery induced severe hepatotoxicity that leads to liver inflammation in rats. Also, the serum ammonia level was increased by MBDL surgery. However, the liver dysfunction of MBDL surgery-operated rats was attenuated by UGBE treatment via myeloid differentiation factor 88-dependent Toll-like receptor 4 signaling pathways. Conclusion: UGBE has a protective effect on liver fibrosis induced by MBDL in rats through inhibition of the TLR4 signaling pathway in liver.

Triptolide Suppresses the Expression of Cyclooxygenase-2 Induced by Toll-Like Receptor 3 and 4 Agonists

  • Gu, Gyo-Jeong;Eom, Sang-Hoon;Min, In Soon;Youn, Hyung-Sun
    • 대한의생명과학회지
    • /
    • 제19권2호
    • /
    • pp.112-117
    • /
    • 2013
  • Toll-like receptors (TLRs) recognize pathogen-associated molecular patterns (PAMPs) and regulate the activation of innate immunity. All TLR signaling pathways culminate in the activation of NF-${\kappa}B$, leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Triptolide (TP), a natural component of Tripterygium wilfordii Hook. F, has been used as folk remedies to treat many chronic diseases for many years. In the present report, we present biochemical evidence that TP inhibits the NF-${\kappa}B$ activation induced by polyriboinosinic polyribocytidylic acid (Poly[I:C], TLR3 agonist) and lipopolysaccharide (LPS, TLR4 agonist). TP also inhibits COX-2 expression induced by Poly[I:C] and LPS. These results suggest that TP can modulate the immune responses regulated by TLR3 and TLR4 signaling pathways.

Macrophage Activation by an Acidic Polysaccharide Isolated from Angelica Sinensis (Oliv.) Diels

  • Yang, Xingbin;Zhao, Yan;Wang, Haifang;Mei, Qibing
    • BMB Reports
    • /
    • 제40권5호
    • /
    • pp.636-643
    • /
    • 2007
  • This study was designed to identify and characterize the mechanism of macrophage activation by AAP, an acidic polysaccharide fraction isolated from the roots of Angelica sinensis (Oliv.) Diels. As a result, AAP significantly enhanced nitric oxide (NO) production and cellular lysosomal enzyme activity in murine peritoneal macrophages in vitro and in vivo. Furthermore, L-NAME, a specific inhibitor of inducible nitric oxide synthase (iNOS), effectively suppressed AAP-induced NO generation in macrophages, indicating that AAP stimulated macrophages to produce NO through the induction of iNOS gene expression and the result was further confirmed by the experiment of the increase of AAP-induced iNOS transcription in a dose-dependent manner. To further investigate, AAP was shown to strongly augment toll-like receptor 4 (TLR4) mRNA expression and the pretreatment of macrophages with anti-TLR4 antibody significantly blocked AAP-induced NO release and the increase of iNOS activity, and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) secretion.

지질 다당질 인지경로에서 기질금속단백분해효소-8 분비에 대한 CD14와 Toll-like receptors의 역할 연구 (The role of CD14 and Toll-like receptors on the release of MMP-B in the LPS recognition pathway)

  • 양승민;김태일;설양조;이용무;구영;정종평;한수부;류인철
    • Journal of Periodontal and Implant Science
    • /
    • 제36권3호
    • /
    • pp.579-590
    • /
    • 2006
  • 1. 연구배경 교원질 분해작용을 하는 호중구의 세포질 효소인 기질금속단백분해효소-8은 치주질환, 류마티스 관절염, 그리고 궤양결장염과 같은 염증성 질환에서 농도가 증가한다고 알려져 있다. 최근에는 A. actinomycetemcomitans의 leukotoxin이 사람호중구에서 기질금속단백분해효소-8의 분비를 유도하는 것이 보고되었다. 이 연구의 목적은 선천면역 체계에서 세포표면 항원무리14, Toll-like 수용기, 그리고 $NF-{\kappa}$ B경로를 통하여 A. actinomycetemcomitans의 지질다당질로 유도된 기질금속단백분해효소-8의 분비 여부와 세포기전을 알아보고자 하였다. 2. 연구재료 및 방법 건강한 개인 제공자(남자 13명, 여자 3명)로부터 얻은 개개인의 20ml 말초혈액을 제조사의 지침에 따라 호중구를 추출한 후 항세포표면 항원무리14와 함께 $4^{\circ}C$에서 30분간 전배양 한 후, $37^{\circ}C$에서 9시간 동안 배양시켰다. 추출한 호중구에 Toll-like 수용기 억제제 또는 $NF-{\kappa}$ B억제제인 TPCK를 첨가한 후 $37^{\circ}C$에서 1시간 동안 전배양하고 $37^{\circ}C$에서 9시간 동안 배양시켰다. 호중구에 세포뼈대 억제제인 cholchicine, nocodazole, demecolcine, 그리고 cytochalasin B를 A. actinomycetemcomitans의 지질다당질과 함께 $37^{\circ}C$에서 9시간 동안 배양시켰다. 기질금속단백분해효소-8 분비량은 효소면역측정법을 통해 결정하였다. 통계처리는 일원배치 분산분석법을 이용하였다(p<0.05). 3. 결과 A. actinomycetemcomitans 지질다당질은 기질금속단백분해효소-8의 분비를 증가시켰다. 기질금속단백분해효소-8의 분비는 항세포표면 항원무리14에 의해서 억제되었지만, 항 Toll-like 수용기2, 항 Toll-like 수용기4 항체는 억제시키지 못했다. $NF-{\kappa}$ B 억제제는 A. actinomycetemcomitans의 지질다당질로 유도된 $NF-{\kappa}$ B 결합 활성도와 기질금속단백분해효소-8 분비를 억제하였다. 미세섬유 중합반응 억제제는 A. actinomycetemcomitans의 지질다당질로 유도된 기질금속단백분해효소-8의 분비를 억제시켰으나, 미세관 중합반응억제제는 억제시키지 못했다. 4. 결론 위의 연구결과를 종합하여 볼 때, 기질금속단백분해효소-8은 A. actinomycetemcomitans의 지질다당질로 유도되며, 세포표면 항원무리-$NF-{\kappa}$ B 경로를 통하여 분비되고, 이 분비 과정은 미세섬유 계통이 관여하는 것으로 보인다.