• Title/Summary/Keyword: Toeplitz-type operators

Search Result 9, Processing Time 0.026 seconds

TOEPLITZ OPERATORS ON BLOCH-TYPE SPACES AND A GENERALIZATION OF BLOCH-TYPE SPACES

  • Kang, Si Ho
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.3
    • /
    • pp.439-454
    • /
    • 2014
  • We deal with the boundedness of the n-th derivatives of Bloch-type functions and Toeplitz operators and give a relationship between Bloch-type spaces and ranges of Toeplitz operators. Also we prove that the vanishing property of ${\parallel}uk^{\alpha}_z{\parallel}_{s,{\alpha}}$ on the boundary of $\mathbb{D}$ implies the compactness of Toeplitz operators and introduce a generalization of Bloch-type spaces.

TOEPLITZ-TYPE OPERATORS ON THE FOCK SPACE F2α

  • Chunxu Xu;Tao Yu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.957-969
    • /
    • 2023
  • Let j be a nonnegative integer. We define the Toeplitz-type operators T(j)a with symbol a ∈ L(C), which are variants of the traditional Toeplitz operators obtained for j = 0. In this paper, we study the boundedness of these operators and characterize their compactness in terms of its Berezin transform.

SCHATTEN CLASSES OF COMPOSITION OPERATORS ON DIRICHLET TYPE SPACES WITH SUPERHARMONIC WEIGHTS

  • Zuoling Liu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.875-895
    • /
    • 2024
  • In this paper, we completely characterize the Schatten classes of composition operators on the Dirichlet type spaces with superharmonic weights. Our investigation is basced on building a bridge between the Schatten classes of composition operators on the weighted Dirichlet type spaces and Toeplitz operators on weighted Bergman spaces.

ON A CLASS OF REFLEXIVE TOEPLITZ OPERATORS

  • HEDAYATIAN, K.
    • Honam Mathematical Journal
    • /
    • v.28 no.4
    • /
    • pp.543-547
    • /
    • 2006
  • We will use a result of Farrell, Rubel and Shields to give sufficient conditions under which a Toeplitz operator with conjugate analytic symbol to be reflexive on Dirichlet-type spaces.

  • PDF

ON HYPONORMALITY OF TOEPLITZ OPERATORS WITH POLYNOMIAL AND SYMMETRIC TYPE SYMBOLS

  • Hazarika, Munmun;Phukon, Ambeswar
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.617-625
    • /
    • 2011
  • In [6], it was shown that hyponormality for Toeplitz operators with polynomial symbols can be reduced to classical Schur's algorithm in function theory. In [6], Zhu has also given the explicit values of the Schur's functions ${\Phi}_0$, ${\Phi}_1$ and ${\Phi}_2$. Here we explicitly evaluate the Schur's function ${\Phi}_3$. Using this value we find necessary and sufficient conditions under which the Toeplitz operator $T_{\varphi}$ is hyponormal, where ${\varphi}$ is a trigonometric polynomial given by ${\varphi}(z)$ = ${\sum}^N_{n=-N}a_nz_n(N{\geq}4)$ and satisfies the condition $\bar{a}_N\(\array{a_{-1}\\a_{-2}\\a_{-4}\\{\vdots}\\a_{-N}}\)=a_{-N}\;\(\array{\bar{a}_1\\\bar{a}_2\\\bar{a}_4\\{\vdots}\\\bar{a}_N}\)$. Finally we illustrate the easy applicability of the derived results with a few examples.

RANGE INCLUSION OF TWO SAME TYPE CONCRETE OPERATORS

  • Nakazi, Takahiko
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1823-1830
    • /
    • 2016
  • Let H and K be two Hilbert spaces, and let A and B be two bounded linear operators from H to K. We are interested in $RangeB^*{\supseteq}RangeA^*$. It is well known that this is equivalent to the inequality $A^*A{\geq}{\varepsilon}B^*B$ for a positive constant ${\varepsilon}$. We study conditions in terms of symbols when A and B are singular integral operators, Hankel operators or Toeplitz operators, etc.

PROPERTIES OF kth-ORDER (SLANT TOEPLITZ + SLANT HANKEL) OPERATORS ON H2(𝕋)

  • Gupta, Anuradha;Gupta, Bhawna
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.855-866
    • /
    • 2020
  • For two essentially bounded Lebesgue measurable functions 𝜙 and ξ on unit circle 𝕋, we attempt to study properties of operators $S^k_{\mathcal{M}({\phi},{\xi})=S^k_{T_{\phi}}+S^k_{H_{\xi}}$ on H2(𝕋) (k ≥ 2), where $S^k_{T_{\phi}}$ is a kth-order slant Toeplitz operator with symbol 𝜙 and $S^k_{H_{\xi}}$ is a kth-order slant Hankel operator with symbol ξ. The spectral properties of operators Sk𝓜(𝜙,𝜙) (or simply Sk𝓜(𝜙)) are investigated on H2(𝕋). More precisely, it is proved that for k = 2, the Coburn's type theorem holds for Sk𝓜(𝜙). The conditions under which operators Sk𝓜(𝜙) commute are also explored.