• 제목/요약/키워드: Tn5 insertion mutants

검색결과 13건 처리시간 0.026초

Rhizoctonia solani 길항세균 Pseudomonas fluorescens의 Tn5 삽입 돌연변이주 분리 및 특성 (Isolation and Characterization of Tn5 Insertion Mutants of Pseudomonas fluorescens Antagonistic to Rhizoctonia solani)

  • 박서기;박기범;김기청
    • 한국식물병리학회지
    • /
    • 제10권1호
    • /
    • pp.39-46
    • /
    • 1994
  • Pseudomonas fluorescens Biovar III strains S-2 antagonistic to Rhizoctonia solani was subjected to Tn5 mutagenesis by the transposon vector pGS9. Ampicillin and kanamycin resistant (Ampr, Kmr) transconjugants were recovered at a frequency of 1.3$\times$10-7 per initial recipient cell, when recipient cells were washed twice in TE buffer before conjugation. Of the ca. 3000 transconjugants, a frequency of noninhibitory (Inh-), nonfluorescent (Flu-) and auxotorphic (Pro-) mutants were 0.27%, 0.47% and 0.40%, respectively. In these mutants, all Inh- mutants showed the same colony morphology as wild type, whereas all Flu- and Pro- mutants inhibited the growth of R. solani. These mutants were also susceptible to chloramphenicol, indicating only the Tn5 element, except for parts of pGS9, was integrated into the recipient genome. In a Southern blot analysis, the Tn5 element inserted into one site on the chromosome for each of the chosen mutants. However, Tn5 insertion sites of Inh-, and Pro- mutants were differed in each other. These indicate that the genes essential for R. solani inhibition, fluorescent production and auxotrophic are chromosomally located, but not linked to each other.

  • PDF

모잘록병(Rhizoctonia solani)의 억제에 있어서 Chromobacterium violaceum이 생산하는 Chitinase의 역할 (Role of Chitinase Produced by Chromobacterium violaceum in the Suppression of Rhizoctonia Damping-off)

  • 박서기;이효연;김기청
    • 한국식물병리학회지
    • /
    • 제11권4호
    • /
    • pp.304-311
    • /
    • 1995
  • To determine whether chitinolytic enzymes from Chromobacterium violaceum C-61 play an important role in the suppression of Rhizoctonia damping-off, Tn5 insertion mutants deficient in chitinolytic activity (Chi a- mutants) were selected and their chitinolytic and disease suppression were compared with those of the parental strain. Four Chi a- mutants selected from about 2,000 transconjugants did not inhibit mycelial growth of Rhizoctonia solani on nutrient agar-potato dextrose agar (BA-PDA) and their abilities to suppress Rhizoctonia damping-off were much lower than the parental strain. However, population density in the eggplant rhizosphere did not differ significantly between the parental strain and four Chi a- mutants. The crude enzyme of the parental strain inhibited growth of R. solani on NA-PDA and its chitinase activity was much higher than that of Chi a- mutants. But the N,N' -diacetylchitobiase activity between these isolates were not significantly different. The chitinase of Chi a- mutants was defective in 2 isoforms of 52- and 37-kDa among four isoforms of 54-, 52-, 50- and 37-kDa. A Tn5 element was inserted into one site of 10 kb EcoRI fragment of chromosomal DNA in three Chi- mutants, C61-C1, -C2, and -C3. In C61-C4 mutant, a Tn5 element was inserted into two sites of 10 kb and 4.4 kb EcoRI fragments. These results suggest that the chitinase of C. violaceum C-61 play an important role in the suppression of Rhizoctonia damping-off of cucumber and eggplant.

  • PDF

Transposon Tn5 및 Reverse Field Electrophoresis를 이용한 Caulobuter crescentus의 유전자 분석 연구 (Genetic Analysis of Caulobuter crescentus by Using Transposon Tn5 and Reverse Field Electrophoresis)

  • 구본성;버트일리
    • 한국미생물·생명공학회지
    • /
    • 제17권3호
    • /
    • pp.183-187
    • /
    • 1989
  • 일반적으로 Mu phage를 가지고 있는 plasmid를 장내 세균에 삽입시키면 대부분의 Mu에 민감한 세균들은 zygotic induction이 일어나서 recipient cell 들이 살아남지 못하게 된다. 그러나 Mu 저항성 세균을 사용하면 cell이 죽지않고 recipient내에 삽입되는데 그 정확한 현상은 아직 밝혀지지 않았으나 Mu의 복제에 필요한 host의 기능이 결여된 것으로 추정되고 있다. 또한 reverse field electrophoresis를 사용하여 insertion mutant 나 deletion mutant들 의 염색체 및 거대 분자 DNA의 변이를 쉽게 비교 분석할 수가 있다. 본 실험에서는 Mu phage 저항성 C. crescentus를 사용하여 Tn5에 의한 영향 요구성 돌연변이주 출현률 및 운동성 돌연변이주 출현률을 조사한 결과 2%∼3% 수준으로 돌연변이가 일어났으며 이들 변이주들의 염색체를 Dra I 제한효소로 절단한 다음 reverse field electrophoresis로 분석한 결과 영양 요구성 돌연변이 균주들은 Tn5가 여러 위치에, 운동성에 돌연변이를 일으킨 균주들은 유사한 위치에 Tn5가 삽입된 것을 확인할 수 있었으나 hybridization 방법으로 확인한 것처럼 동시에 여러 위치를 확인할 수는 없었다. 그러나 이와 같은 문제들은 전기장의 교차시간 간격을 조절함으로 더 정확하게 확인할 수 있을 것으로 사료된다.

  • PDF

Crystal vilet 색소분해능이 소실된 Citrobacter sp. 의 분리 및 특성 (Isolation and Characterization of Citrobacter sp. Mutants Defective in Decolorization of Crystal Violet)

  • Kim, Ji-Yoon;Kim, Kyung-Woon;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • 생명과학회지
    • /
    • 제10권4호
    • /
    • pp.333-339
    • /
    • 2000
  • To identify genes involved in the decolorization of crystal violet, we isolated random mutants generated by transponson insertion in crystal violet-declorizing bacterium, Citrobacter sp. The resulting mutant bank yielded mutants with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized with six distinct phenotypes, and Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in the mutants Ctg 2, 5 an 6, whereas two and three bands were detected in Ctg1, 4 and 3, respectively. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. From comparison with a sequence database, putative protein product encoded by ctg 5 was identified as E. coli maltose transproter(Mal G) homolog, whereas the deduced amino acid sequence of the other ctg genes did not show any significant similarity with any DNA or protein sequency. Therefore, these results indicate that the other ctg genes except ctg 5 encode new proteins responsible for decolorization of crystal violet.

  • PDF

Isolation of Citrobacter sp. Mutants Defective in Decolorization of Brilliant Green by Transposon Mutagenesis

  • Jang, Moon-Sun;Lee, Young-Mi;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.139-142
    • /
    • 2004
  • To identify genes involved in the decolorization of brilliant green, we isolated random mutants generated by transposon insertion in brilliant green-decolorizing bacterium, Citrobacter sp. The resulting mutant bank yielded 19 mutants with a complete defect in terms of the brilliant green color removing ability. Southern hybridization with a Tn5 fragment as a probe showed a single hybridized band in 7 mutants and these mutants appeared to have insertions at different sites of the chromosome. Tn5-inserted genes were isolated and the DNA sequence flanking Tn5 was determined. By comparing these with a sequence database, putative protein products encoded by bg genes were identified as follows: bg 3 as a LysR-type regulatory protein; bg 11 as a MalG protein in the maltose transport system; bg 14 as an oxidoreductase; and bg 17 as an ABC transporter. The sequences deduced from the three bg genes, bg 2, bg 7 and bg 16, showed no significant similarity to any protein with a known function, suggesting that these three bg genes may encode unidentified proteins responsible for the decolorization of brilliant green.

Applications of Transposon-Based Gene Delivery System in Bacteria

  • Choi, Kyoung-Hee;Kim, Kang-Ju
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권3호
    • /
    • pp.217-228
    • /
    • 2009
  • Mobile genetic segments, or transposons, are also referred to as jumping genes as they can shift from one position in the genome to another, thus inducing a chromosomal mutation. According to the target site-specificity of the transposon during a transposition event, the result is either the insertion of a gene of interest at a specific chromosomal site, or the creation of knockout mutants. The former situation includes the integration of conjugative transposons via site-specific recombination, several transposons preferring a target site of a conserved AT-rich sequence, and Tn7 being site-specifically inserted at attTn7, the downstream of the essential glmS gene. The latter situation is exploited for random mutagenesis in many prokaryotes, including IS (insertion sequence) elements, mariner, Mu, Tn3 derivatives (Tn4430 and Tn917), Tn5, modified Tn7, Tn10, Tn552, and Ty1, enabling a variety of genetic manipulations. Randomly inserted transposons have been previously employed for a variety of applications such as genetic footprinting, gene transcriptional and translational fusion, signature-tagged mutagenesis (STM), DNA or cDNA sequencing, transposon site hybridization (TraSH), and scanning linker mutagenesis (SLM). Therefore, transposon-mediated genetic engineering is a valuable discipline for the study of bacterial physiology and pathogenesis in living hosts.

The Biocontrol Activity of Chromobacterium sp. Strain C-61 against Rhizoctonia solani Depends on the Productive Ability of Chitinase

  • Park, Seur-Kee;Lee, Myung-Chul;Harman, Gary E.
    • The Plant Pathology Journal
    • /
    • 제21권3호
    • /
    • pp.275-282
    • /
    • 2005
  • A chitinolytic bacterium, Chromobacterium sp. strain C-61, was found strongly antagonistic to Rhizoctonia solani, a causal agent of damping-off of eggplant. In this study, the biocontrol activity and enzymatic characteristics of strain C-61 were compared with its four Tn5 insertion mutants (C61-A, -B, -C, and -D) that had lower chitinolytic ability. The chitinase activity of a 2-day old culture was about $76\%,\;49\%\;and\;6\%$ level in C61-A, C61-B and in C61-C, respectively, compared with that of strain C-61. The $\beta-N-acetylhexosaminidase$(Nahase) activity was little detected in strain C-61 but increased largely in C-61A, C61-B and C61-C. Activities of chitinase and Nahase appeared to be negatively correlated in these strains. Another mutant, C-61D, produced no detectable extracellular chitinase and Nahase. The in vitro and in vivo biocontrol activities of strain C-61 and its mutants were closely related to their ability to produce chitinase but not Nahase. No significant differences in population densities between strain C-61 and its mutants were observed in soil around eggplant roots. The results of SDS-PAGE and isoelectrofocusing showed that a major chitinase of strain C-61 is 54-kDa with pI of approximately 8.5. This study provides evidence that the biocontrol activity of Chromobacterium sp. strain C-61 against Rhizoctonia solani depends on the ability to produce chitinase with molecular weight of 54-kDa and pI of 8.5.

Insertional Transposon Mutagenesis of Xanthomonas oryzae pv. oryzae KXO85 by Electroporation

  • Lee, Byoung-Moo;Park, Young-Jin;Park, Dong-Suk;Kang, Hee-Wan;Lee, Gil-Bok;Hahn, Jang-Ho
    • The Plant Pathology Journal
    • /
    • 제20권3호
    • /
    • pp.229-233
    • /
    • 2004
  • The bacterial leaf blight, which is caused by Xantho-monas oryzae pv. oryzae, is the most damaging and intractable disease of rice. To identify the genes involved in the virulence mechanism of transposon TnS complex, which possesses a linearized transposon and transposase, was successfully introduced into X. oryzae pv. oryzae by electroporation. The transposon mutants were selected and confirm the presence of transposition in X. oryzae pv. oryzae by the PCR amplification of transposon fragments and the Southern hybridization using these mutants. Furthermore, transposon insertion sites in the mutant bacterial chromosome were deter-mined by direct genomic DNA sequencing using transposon-specific primers with ABI 3100 Genetic Analyzer. Efficiency of transposition was influenced mostly by the competence status of X. oryzae pv. oryzae cells and the conditions of electroporation. These results indicated that the insertion mutagenesis strategy could be applied to define function of uncharacterized genes in X. oryzae pv. oryzae.

A Mutation of a Putative NDP-Sugar Epimerase Gene in Ralstonia pseudosolanacearum Attenuates Exopolysaccharide Production and Bacterial Virulence in Tomato Plant

  • Hyoung Ju Lee;Sang-Moo Lee;Minseo Choi;Joo Hwan Kwon;Seon-Woo Lee
    • The Plant Pathology Journal
    • /
    • 제39권5호
    • /
    • pp.417-429
    • /
    • 2023
  • Ralstonia solanacearum species complex (RSSC) is a soil borne plant pathogen causing bacterial wilt on various important crops, including Solanaceae plants. The bacterial pathogens within the RSSC produce exopolysaccharide (EPS), a highly complicated nitrogencontaining heteropolymeric polysaccharide, as a major virulence factor. However, the biosynthetic pathway of the EPS in the RSSC has not been fully characterized. To identify genes in EPS production beyond the EPS biosynthetic gene operon, we selected the EPS-defective mutants of R. pseudosolanacearum strain SL341 from Tn5-inserted mutant pool. Among several EPSdefective mutants, we identified a mutant, SL341P4, with a Tn5-insertion in a gene encoding a putative NDP-sugar epimerase, a putative membrane protein with sugar-modifying moiety, in a reverse orientation to EPS biosynthesis gene cluster. This protein showed similar to other NDP-sugar epimerases involved in EPS biosynthesis in many phytopathogens. Mutation of the NDP-sugar epimerase gene reduced EPS production and biofilm formation in R. pseudosolanacearum. Additionally, the SL341P4 mutant exhibited reduced disease severity and incidence of bacterial wilt in tomato plants compared to the wild-type SL341 without alteration of bacterial multiplication. These results indicate that the NDP-sugar epimerase gene is required for EPS production and bacterial virulence in R. pseudosolanacearum.

Citrobacter sp.에서 crystal violet와 malachite green 색소분해에 관여하는 유전자들의 동정 (Identification of Genes Involved in Decolorization of Crystal Violet and Malachite Green in Citrobacter sp.)

  • Lee, Young-Mi;Jang, Moon-Sun;Kim, Seok-Jo;Park, Yong-Lark;Cho, Young-Su;Lee, Young-Choon
    • 생명과학회지
    • /
    • 제14권1호
    • /
    • pp.21-25
    • /
    • 2004
  • Crystal violet와 malachite green색소 분해에 관여하는 유전자들을 규명하기 위하여 색소분해능을 가진 Citrobacter sp.의 염색체 DNA속에의 transposon 도입에 의해 생성된 무작위 변이주들이 분리되었다. 이들 변이 주들로부터 두가지 색소분해능을 소실한 14개의 변이주들이 선별되었고, 이들로부터 염색체 DNA를 분리하여 EcoRl으로 절단한 후 Tn5 단편을 probe로하여 Southern hybridization을 행한 결과, 염색체 DNA상의 각각 다른 부위에 Transposon이 Single 삽입된 5개의 변이주 (Cmg2, Cmg6, Cmg8, Cmgll, Cmg12)가 최종적으로 분리되었다. 이들 변이주들의 Transposon 삽입부위 주위의 염기서열과 이로부터 유추되는 아미노산서열을 database상에 등록되어 있는 유전자의 염기서열과 단백질의 아미노산 서열에 대한 상동성을 비교한 결과, Cmg2는 대장균 maltose trnasporter (Mal C)이고, Cmg6은 LysR-type 전사조절 단백질이며, Cmg12는 산화환원효소를 코드하는 유전자인 것으로 알려졌고, 나머지 Cmg8과 Cmg11은 아직까지 기능이 알려져 있지 않은 단백질을 코드하는 유전자인 것으로임이 판명되었다.