• 제목/요약/키워드: Titanium surfaces

검색결과 225건 처리시간 0.029초

Evaluation of antibacterial activity and osteoblast-like cell viability of TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coating on titanium

  • Ji, Min-Kyung;Park, Sang-Won;Lee, Kwangmin;Kang, In-Chol;Yun, Kwi-Dug;Kim, Hyun-Seung;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권2호
    • /
    • pp.166-171
    • /
    • 2015
  • PURPOSE. The aim of this study was to evaluate antibacterial activity and osteoblast-like cell viability according to the ratio of titanium nitride and zirconium nitride coating on commercially pure titanium using an arc ion plating system. MATERIALS AND METHODS. Polished titanium surfaces were used as controls. Surface topography was observed by scanning electron microscopy, and surface roughness was measured using a two-dimensional contact stylus profilometer. Antibacterial activity was evaluated against Streptococcus mutans and Porphyromonas gingivalis with the colony-forming unit assay. Cell compatibility, mRNA expression, and morphology related to human osteoblast-like cells (MG-63) on the coated specimens were determined by the XTT assay and reverse transcriptase-polymerase chain reaction. RESULTS. The number of S. mutans colonies on the TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated surface decreased significantly compared to those on the non-coated titanium surface (P<0.05). CONCLUSION. The number of P. gingivalis colonies on all surfaces showed no significant differences. TiN, ZrN and $(Ti_{1-x}Zr_x)N$ coated titanium showed antibacterial activity against S. mutans related to initial biofilm formation but not P. gingivalis associated with advanced periimplantitis, and did not influence osteoblast-like cell viability.

Modified simulated body fluid에 침전한 티타늄 표면에서 침전 기간에 따라 나타나는 파골 세포의 분화억제 양상 (Inhibition of Osteoclast differentiation based on precipitation time of titanium surfaces immersed in modified simulated body fluid)

  • 장현민;허성주;김성균;곽재영
    • 대한치과보철학회지
    • /
    • 제57권2호
    • /
    • pp.142-149
    • /
    • 2019
  • 목적: 본 연구의 목적은 티타늄 디스크를 Modified simulated body fluid (mSBF)에 침전시켰을 때, 침전 시킨 기간에 따른 파골 세포 분화 억제 변화 양상을 알아보는 것이다. 재료 및 방법: Machined surface와 anodized surface를 가진 티타늄 합금(Ti grade III)디스크를 각각 증류수와 mSBF에 침전 시켰다. 침전 기간은 7일, 14일, 21일, 28일 진행하였으며, 각각의 기간 동안 대조군은 증류수에 침전하였다. 파골 세포로 분화 가능한 RAW 264.7 세포를 점주하여 침전 기간에 따른 부착된 세포 수 측정, TRAP 활성 측정, western blot을 통한 NFATc1의 발현양상을 측정하였다. 결과: Machined surface와 anodized surface 모두에서 mSBF에14일 이상 침전하였을 때, 파골 세포의 분화를 억제하는 능력이 통계적으로 유의하게 나타났다. 침전 기간과 세포의 부착은 상관관계가 없었다. 14일 이상 침전시켰을 때, TRAP 활성은 감소되었으며, NFATc1의 발현은 억제되었다. 14일 이상 침전 시켰을 때, TRAP활성 감소 및 NFATc1 발현 억제 양상은 변함이 없었다. 결론: 티타늄 합금 디스크를 14일 이상 mSBF에 침전시키면 RAW 264.7 세포가 파골 세포로 분화하는 것을 막을 수 있다. 침전기간이 증가해도 분화 억제 양상은 변화하지 않는다.

타이타늄 표면 코팅 처리에 따른 타이타늄도재관의 파절강도 비교 (A COMPARISON OF FRACTURE STRENGTHS OF PORCELAIN-FUSED-TO-TITANIUM CROWN AMONG TITANIUM SURFACE COATING TREATMENTS)

  • 김지혜;박상원;방몽숙;양홍서;박하옥;임현필;오계정;김현승;이광민;이경구
    • 대한치과보철학회지
    • /
    • 제45권2호
    • /
    • pp.203-215
    • /
    • 2007
  • Statement of problem: Titanium and its alloy, with their excellent bio-compatibility and above average resistance to corrosion, have been widely used in the field of dentistry. However, the excessive oxidization of titanium which occurs during the process of firing on porcelain makes the bonding of titanium and porcelain more difficult than that of the conventional metal-porcelain bonding. To solve this problem related to titanium-porcelain bonding, several methods which modify the surfaces, coat the surfaces of titanium with various pure metals and ceramics, to enable the porcelain adhesive by limiting the diffusion of oxygen and forming the adhesive oxides surfaces, have been investigated. Purpose: The purpose of this study was to know whether the titanium-porcelain bonding strength could be enhanced by treating the titanium surface with gold and TiN followed by fabrication of clinically applicable porcelain-fused-to-titanium crown Material and method: The porcelain-fused-to-titanium crown was fabricated after sandblasting the surface of the casting titanium coping with $Al_2O_3$ and treating the surface with gold and TiN coating followed by condensation and firing of ultra-low fusing porcelain. To compare with porcelain-fused-to-titanium crowns, porcelain-fused-to-gold crowns were fabricated and used as control groups. The bonding strengths of porcelain-fused-to-gold crowns and porcelain-fused-totitanium crowns were set for comparison when the porcelain was fractured on purpose to get the experimental value of fracture strength. Then, the surface were examined by SEM and each fracturing pattern were compared with each other Result:Those results are as follows. 1. The highest value of fracture strength of porcelain-fused-to-titanium crowns was in the order of group with gold coating, group with TiN coating, group with $Al_2O_3$ sandblasting. No statistically significant difference was found among the three (P>.05). 2. The porcelain-fused-to-gold crowns showed the highest value in bonding strength. The bonding strength of crowns porcelain-fused-to-titanium crowns of rest groups showed bonding strength reaching only 85%-94% of that of PFG, though simple comparision seemed unacceptable due to the difference in materials used. 3. The fracturing patterns between metal and porcelain showed mixed type of failure behavior including cohesive failure and adhesive failure as a similar patterns by examination with the naked eye and SEM. But porcelain-fused-to-gold crowns showed high incidence of adhesive failure and porcelain-fused-to-titanium crowns showed high incidence of cohesive failure. Conclusion: Above results proved that when fabricating porcelain-fused-to-titanium crowns, treating casting titanium surface with gold or TiN was able to enhance the bonding strength between titanium and porcelain. Mean value of masticatory force was found to showed clinically acceptable values in porcelain bonding strength in all three groups. However, more experimental studies and evaluations should be done in order to get better porcelain bonding strength and various surface coating methods that can be applied on titanium surface with ease.

Effects of various prophylactic procedures on titanium surfaces and biofilm formation

  • Di Salle, Anna;Spagnuolo, Gianrico;Conte, Raffaele;Procino, Alfredo;Peluso, Gianfranco;Rengo, Carlo
    • Journal of Periodontal and Implant Science
    • /
    • 제48권6호
    • /
    • pp.373-382
    • /
    • 2018
  • Purpose: The aim of this study was to evaluate the effects of various prophylactic treatments of titanium implants on bacterial biofilm formation, correlating surface modifications with the biofilms produced by Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and bacteria isolated from saliva. Methods: Pure titanium disks were treated with various prophylactic procedures, and atomic force microscopy (AFM) was used to determine the degree to which surface roughness was modified. To evaluate antibiofilm activity, we used P. aeruginosa PAO1, S. aureus, and saliva-isolated Streptococcus spp., Bacteroides fragilis, and Staphylococcus epidermidis. Results: AFM showed that the surface roughness increased after using the air-polishing device and ultrasonic scaler, while a significant reduction was observed after using a curette or polishing with Detartrine ZTM (DZ) abrasive paste. In addition, we only observed a significant (P<0.01) reduction in biofilm formation on the DZ-treated implant surfaces. Conclusion: In this study, both AFM and antibiofilm analyses indicated that using DZ abrasive paste could be considered as the prophylactic procedure of choice for managing peri-implant lesions and for therapy-resistant cases of periodontitis.

Bacterial adhesion and colonization differences between zirconia and titanium implant abutments: an in vivo human study

  • De Oliveira, Greison Rabelo;Pozzer, Leandro;Cavalieri-Pereira, Lucas;De Moraes, Paulo Hemerson;Olate, Sergio;De Albergaria Barbosa, Jose Ricardo
    • Journal of Periodontal and Implant Science
    • /
    • 제42권6호
    • /
    • pp.217-223
    • /
    • 2012
  • Purpose: Several parameters have been described for determining the success or failure of dental implants. The surface properties of transgingival implant components have had a great impact on the long-term success of dental implants. The purpose of this study was to compare the tendency of two periodontal pathogens to adhere to and colonize zirconia abutments and titanium alloys both in hard surfaces and soft tissues. Methods: Twelve patients participated in this study. Three months after implant placement, the abutments were connected. Five weeks following the abutment connections, the abutments were removed, probing depth measurements were recorded, and gingival biopsies were performed. The abutments and gingival biopsies taken from the buccal gingiva were analyzed using real-time polymerase chain reaction to compare the DNA copy numbers of Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and total bacteria. The surface free energy of the abutments was calculated using the sessile water drop method before replacement. Data analyses used the Mann Whitney U-test, and P-values below 0.05 find statistical significance. Results: The present study showed no statistically significant differences between the DNA copy numbers of A. actinomycetemcomitans, P. gingivalis, and total bacteria for both the titanium and zirconia abutments and the biopsies taken from their buccal gingiva. The differences between the free surface energy of the abutments had no influence on the microbiological findings. Conclusions: Zirconia surfaces have comparable properties to titanium alloy surfaces and may be suitable and safe materials for the long-term success of dental implants.

Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study

  • Degirmenci, Kubra;Saridag, Serkan
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권2호
    • /
    • pp.75-82
    • /
    • 2020
  • PURPOSE. The aim of this study was to investigate the shear bond strength of luting cements used with implant retained restorations on to titanium specimens after different surface treatments. MATERIALS AND METHODS. One hundred twenty disc shaped specimens were used. They were divided into three groups considering the surface treatments (no treatment, sandblasting, and oxygen plasma treatment). Water contact angle of specimens were determined. The specimens were further divided into four subgroups (n=10) according to applied cement types: polycarboxylate cement (Adhesor Carbofine-AC), temporary zinc oxide free cement (Temporary CementZOC), non eugenol provisional cement for implant retained prosthesis (Premier Implant Cement-PI), and non eugenol acrylic-urethane polymer based provisional cement for implant luting (Cem Implant Cement-CI). Shear bond strength values were evaluated. Two-way ANOVA test and Regression analysis were used to statistical analyze the results. RESULTS. Overall shear bond strength values of luting cements defined in sandblasting groups were considerably higher than other surfaces (P<.05). The cements can be ranked as AC > CI > PI > ZOC according to shear bond strength values for all surface treatment groups (P<.05). Water contact angles of surface treatments (control, sandblasting, and plasma treatment group) were 76.17° ± 3.99, 110.45° ± 1.41, and 73.80° ± 4.79, respectively. Regression analysis revealed that correlation between the contact angle of different surfaces and shear bond strength was not strong (P>.05). CONCLUSION. The retentive strength findings of all luting cements were higher in sandblasting and oxygen plasma groups than in control groups. Oxygen plasma treatment can improve the adhesion ability of titanium surfaces without any mechanical damage to titanium structure.

티타늄합금의 연삭특성에 관한 연구 (A Study on the Grinding Characteristics of Titanium Alloy)

  • 김성헌;최환;이종찬
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.55-62
    • /
    • 2002
  • This investigation reports the grinding characteristics of titanium alloy(Ti-6AI-4V). Grinding experiments were performed at various grinding conditions. The grinding forces were measured to investigate the grindability of titanium alloy with the five different wheels including Green carbide, Alumina, Resin Diamond, Resin CBN and Vitrified CBN. To investigate the grinding characteristics of titanium alloy grinding force, force ratio, specific grinding energy and grinding-ratio were measured. Surface roughness was also measured with tracer and the ground surfaces were observed with SEM Residual stress measurement was conducted on the X-Ray Diffractometer. Force ratio of grinding of titanium alloy was very lower than that of grinding of SKD-11 Surface roughness with Resin Diamond wheel was a little larger and rougher surface than that with other wheels Grinding ratio of titanium alloy was a little lower than that of other materials. Grinding ratio of titanium alloy with Diamond wheel was almost six times larger than that With CBN wheel. As a result of five different wheels, the most excellent wheel in grinding of Titanium alloy was Resin Diamond wheel.

  • PDF

Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

  • Li, Lin-Jie;Kim, So-Nam;Cho, Sung-Am
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권3호
    • /
    • pp.235-240
    • /
    • 2016
  • PURPOSE. In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS. The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS. Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION. This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies.