• Title/Summary/Keyword: Titanium screw

Search Result 176, Processing Time 0.421 seconds

Quantitative investigations of titanium alloy implants (타이태늄 합금의 생체적합도에 관한 연구)

  • Han, Chong-Hyun;Heo, Seong-Joo;Ku, Young;Choi, Young-Chang;Chung, Chong-Pyong;Park, Chung-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.28 no.3
    • /
    • pp.401-408
    • /
    • 1998
  • Screw shaped implants of Titanium-13Zirconium-6Niobium(newly developed), Titanium-6Zirconium-6Sn-6Niobium(newly developed) and Titanium-6Aluminum-4Vanadium were machined with square top and inserted in rabbit bone for 3 months. Biomechanical tests(removal torque) showed Titanium-13Zirconium-6Niobium and Titanium-6Zirconium-6Sn-6Niobium to be more stable in the bone bed than those of Titanium-6Aluminum-4Vanadium. Titanium-13Zirconium-6Niobium implants demonstrated a mean removal torque of 31.59Ncm while Titanium-6Aluminum-4Vanadium demonstrated a mean removal torque of 25.27Ncm and Titanium-6Zirconium-6Sn-6Niobium revealed a mean removal torque of 37.44Ncm and were statistically significance in Wilcoxon Signed Rank test(P<0.05). Histomorphometrical comparisons were performed on $10\;{\mu}m$ thick undecalcified ground sections in the light microscope and Titanium-13Zirconium-6Niobium showed more mean bone-tometal contact ratio than to other twotitanium alloys but had no statistically significant differences were found among the three materials(P>0.01).

  • PDF

Effect of cement washout on loosening of abutment screws and vice versa in screw- and cement- retained implant-supported dental prosthesis

  • Kim, Seok-Gyu;Chung, Chae-Heon;Son, Mee-Kyoung
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.3
    • /
    • pp.207-213
    • /
    • 2015
  • PURPOSE. The purpose of this study was to examine the abutment screw stability of screw- and cement-retained implant-supported dental prosthesis (SCP) after simulated cement washout as well as the stability of SCP cements after complete loosening of abutment screws. MATERIALS AND METHODS. Thirty-six titanium CAD/CAM-made implant prostheses were fabricated on two implants placed in the resin models. Each prosthesis is a two-unit SCP: one screw-retained and the other cemented. After evaluating the passive fit of each prosthesis, all implant prostheses were randomly divided into 3 groups: screwed and cemented SCP (Control), screwed and non-cemented SCP (Group 1), unscrewed and cemented SCP (Group 2). Each prosthesis in Control and Group 1 was screwed and/or cemented, and the preloading reverse torque value (RTV) was evaluated. SCP in Group 2 was screwed and cemented, and then unscrewed (RTV=0) after the cement was set. After cyclic loading was applied, the postloading RTV was measured. RTV loss and decementation ratios were calculated for statistical analysis. RESULTS. There was no significant difference in RTV loss ratio between Control and Group 1 (P=.16). No decemented prosthesis was found among Control and Group 2. CONCLUSION. Within the limits of this in vitro study, the stabilities of SCP abutment screws and cement were not significantly changed after simulated cement washout or screw loosening.

THE STUDY ON THE REMOVAL TORQUE OF THE DIAMOND LIKE CARBON COATED TITANIUM ABUTMENT SCREWS (DLC 표면 처리에 따른 임플랜트 지대주 나사의 풀림 현상에 관한 연구)

  • Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae;Yim Soon-Ho;Lee Jong-Yeop;Lee Kwang-Ryeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.128-135
    • /
    • 2003
  • Statement of problem : Implant screw loosening remains a problem in implant prosthodontics. Some abutment screws with treated surfaces were introduced to prevent screw loosening and to increase preload. DLC(Diamond Like Carbon) film has similar properties on hardness, wear resistance, chemical stability, biocompatibility as real diamond materials. Purpose : The purpose of this study was to investigate the effect of lubricant layer on abutment screw and to discriminate more effective method between soft lubricant and hard lubricant to prevent screw loosening. Material and method : In this study, $1{\mu}m$ thickness DLC was used as protective, lubricating layer of titanium screws and 3 times removal torque was measured on the abutment screws to investigate the difference in 10 coated and 10 non-coated abutment screws. Results : The results indicated that the implants with DLC coating group were not more resistant to the applied force in screw loosening. At 32Ncm, the 3 times removal torque in DLC group were $27.75{\pm}2.89,\;25.85{\pm}2.35$ and $26.2{\pm}2.57$. The removal torque in no-coated abutment screws were $27.85{\pm}4.23,\;27.35{\pm}2.81$ and $27.9{\pm}2.31$, respectively. Conclusion : The lubricant layer used in this study was Diamond Like Carbon(DLC) and it have a properties of hard and stable layer. The DLC coating layer was hard enough to prevent distortion of screws in the repeated unscrewing procedure in clinical situation. The reduced friction coefficient in hard DLC layer was not effective to prevent screw loosening.

Zygomaticomaxillary complex fracture after two-jaw surgery

  • Park, Joseph Kyu-hyung;Kim, Sang Wha
    • Archives of Craniofacial Surgery
    • /
    • v.21 no.5
    • /
    • pp.301-304
    • /
    • 2020
  • Orthognathic surgeries often utilize rigid fixation for stabilization of the osteotomy site. The longterm fate of rigid fixations is still under investigation, and whether they should be routinely removed is under debate despite their low complication rates. Here, we report a case where a 26-year-old man suffered high-velocity trauma to his face 7 years after a two-jaw surgery. Computed tomography examination revealed a zygomaticomaxillary complex fracture, and open reduction and internal fixation was performed along with anterior maxillary wall reconstruction using absorbable mesh. Intraoperative examination revealed a broken L-shaped titanium plate near the fracture site with multiple bony fragments near each titanium screw. The rigid titanium system may have caused comminution of the fracture pattern, worsening the severity of the fracture.

The Effect of Repetitive Insertion and Pullout of Spinal Screws on Pullout Resistance : A Biomechanical Study (척추 수술에 사용되는 나사못의 반복 삽입과 인출이 인장항력에 미치는 영향 : 생체 역학적 연구)

  • Bak, Koang Hum;Ferrara, Lisa;Kim, Kwang Jin;Kim, Jae Min;Kim, Choong Hyun;Benzel, Edward C.
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.2
    • /
    • pp.131-136
    • /
    • 2001
  • Object : The clinical uses of screws are increasing with broader applications in spinal disorders. When screws are inserted repeatedly to achieve optimal position, tips of screw pitch may become damaged during insertion even though there are significant differences in the moduli of elasticity between bone and titanium. The effect of repeated screw insertion on pullout resistance was investigated. Methods : Three different titanium screws(cortical lateral mass screw, cancellous lateral mass screw and cervical vertebral body screw) were inserted into the synthetic cancellous material and then extracted axially at a rate of 2.4mm/min using Instron(Model TT-D, Canton, MA). Each set of screws was inserted and pulled out three times. There were six screws in each group. The insertional torque was measured with a torque wrench during insertion. Pullout strength was recorded with a digital oscilloscope. Results : The mean pullout force measurements for the cortical lateral mass screws($185.66N{\pm}42.60$, $167.10N{\pm}27.01$ and $162.52 N{\pm}23.83$ for first, second and third pullout respectively : p=0.03) and the cervical vertebral body screws($386.0N{\pm}24.1$, $360.2N{\pm}17.5$ and $330.9N{\pm}16.7$ : p=0.0024) showed consecutive decrease in pullout resistance after each pullout, whereas the cancellous lateral mass screws did not($194.00N{\pm}36.47$, $219.24N{\pm}26.58$ and 199.49N(36.63 : p=0.24). The SEM after insertion and pullout three times showed a blunting in the tip of the screw pitch and a smearing of the screw surface. Conclusions : Repetitive screw insertion and pullout resulted in the decrease of pullout resistance in certain screws possibly caused by blunting the screw tip. This means screw tips suffer deformations during either repeated insertion or pullout. Thus, the screws that have been inserted should not be used for the final construct.

  • PDF

The effect of heat to remove cement on implant titanium abutment and screw (시멘트 제거를 위해 가한 열이 임플란트 티타늄 지대주와 나사에 미치는 영향)

  • Yi, Hyo-Gyoung;Gil, Ki-Sung;Lee, Jung-Jin;Ahn, Seung-Geun;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.3
    • /
    • pp.179-187
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effect of heat applied to disintegrate cement on the removal torque value and fracture strength of titanium abutment and abutment screw. Materials and methods: Implants, titanium abutments and abutment screws were prepared for each 20 piece. Implant abutments and screws were classified as the control group in which no heat was applied and the experimental group was heated in a vacuum furnace to $450^{\circ}C$ for 8 minutes and cooled in air. The abutments and screws were connected to the implants with 30 Ncm tightening torque at interval 10 minutes and the removal torque value was measured 15 minutes later. And the fracture strength of abutment screw was measured using universal testing machine. Results: The mean removal torque value was $27.84{\pm}1.07Ncm$ in the control group and $26.55{\pm}1.56Ncm$ in the experimental group and showed statistically significant difference (P < .05). The mean fracture strength was $731.47{\pm}39.46N$ in the control group and $768.58{\pm}46.73N$ in the experimental group and showed statistically no significant difference (P > .05). Conclusion: The heat applied for cement disintegration significantly reduced the removal torque value of the abutment screw and did not significantly affect fracture strength of the abutment screw. Therefore, in the case of applying heat to disintegrate cement it is necessary to separate the abutment screw or pay attention to the reuse of the heated screw. However further studies are needed to evaluate the clinical reuse of the heated screw.

Prediction of Mechanical Behaviors of Bio-mechanical Materials (생체공학용 척추경 나사의 기계적 거동 예측)

  • Park, Joon-Sik;Choi, Jin Hwa;Cho, Myeong-Woo;Choi, Gil-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.72-78
    • /
    • 2004
  • In this paper, mechanical behaviors of developed pedicle screw system, made of bio-mechanical materials(Ti-6Al-4V, Grade 5), ale predicted using FEM analysis. As a first step, morphologic construction of normal Korean spines and surgical operation convenience are considered to design optimum pedicle screw system. In this step, various design variables are considered as design parameters to develop optimized models. As a next step, tension and bending tests are performed to improve the structural performance of the developed system using finite element method. In this step, required Static compression and bending test specifications by ASTM F-04 25 04 01 are applied to understand the bio-mechanical behaviors of the designed spinal implant system under various load types. As the results of this research, it is possible to develop efficient pedicle screw system, having enough rigidity and fixation to stand any spinal damage under allowable stress conditions.

  • PDF

Biomechanical investigation of maxillary implant-supported full-arch prostheses produced with different framework materials: a finite elements study

  • Mirac Berke Topcu, Ersoz;Emre, Mumcu
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.346-359
    • /
    • 2022
  • PURPOSE. Four and six implant-supported fixed full-arch prostheses with various framework materials were assessed under different loading conditions. MATERIALS AND METHODS. In the edentulous maxilla, the implants were positioned in a configuration of four to six implant modalities. CoCr, Ti, ZrO2, and PEEK materials were used to produce the prosthetic structure. Using finite element stress analysis, the first molar was subjected to a 200 N axial and 45° oblique force. Stresses were measured on the bone, implants, abutment screw, abutment, and prosthetic screw. The Von Mises, maximum, and minimum principal stress values were calculated and compared. RESULTS. The maximum and minimum principal stresses in bone were determined as CoCr < ZrO2 < Ti < PEEK. The Von Mises stresses on the implant, implant screw, abutment, and prosthetic screws were determined as CoCr < ZrO2 < Ti < PEEK. The highest Von Mises stress was 9584.4 Mpa in PEEK material on the prosthetic screw under 4 implant-oblique loading. The highest maximum principal stress value in bone was found to be 120.89 Mpa, for PEEK in 4 implant-oblique loading. CONCLUSION. For four and six implant-supported structures, and depending on the loading condition, the system accumulated different stresses. The distribution of stress was reduced in materials with a high elastic modulus. When choosing materials for implant-supported fixed prostheses, it is essential to consider both the number of implants and the mechanical and physical attributes of the framework material.

Comparison of Primary Stability of Different Femoral Fixation Techniques in Anterior Cruciate Ligament Reconstruction (전 십자 인대 재건술에서 대퇴골측 고정 방법의 초기 안정성의 비교)

  • Song, Eun-Kyoo;Lee, Keun-Bae;Lee, Moon
    • Journal of the Korean Arthroscopy Society
    • /
    • v.2 no.1
    • /
    • pp.85-92
    • /
    • 1998
  • Various methods for fixation of graft have been widely used for reconstruction of anterior cruciate ligament. However, the biomechanical strength of each fixation techniques are not fully understood. The purpose of this study is to compare the pull out strength of different fixation techniques which is probably the most important factor for the success at the initial stage of healing. Biomechanical test was carried out to measure and compare the pull out tensile strength of five different fixation techniques in 35 pig(Yorkshire) knees. ANOVA and Duncan multiple comparison test was applied for statistical analysis. In the two fixation techniques with bone patellar tendon bone graft, the mean maximum tensile strength was $1333.4{\pm}148.5N$ with titanium interference screw, while it was $1310.1{\pm}168.9N$ with biodegradable interference screw. The failure mode were pulled out of bone plugs from the femoral tunnel in majority cases. In the fixations with hamstring tendon, the mean maximum tensile strength were $1405.9{\pm}135.1N$ with SemiFix screw, $820.3{\pm}104.5N$ with biodegradable interference screw, and $682.1{\pm}54.2N$ with Endobutton. The mode of failure was variable in each technique. The tendon was pulled out from the tunnel in biodegradable interference screw fixation, the screw was bent in the SemiFix system, and the polyester tape were ruptured or the buttons were pulled into tunnel in Endobutton fixation. The mean maximum tensile strength of two interference screws with bone patellar tendon bone was statistically comparable to that of SemiFix with hamstring tendon. However biodegradable interference screw and Endobutton with hamstring tendon showed weaker maximum tensile strength than above three fixation techniques (P<0.05).

  • PDF

The usability of the image according to the frequency encoding gradient direction conversion in fixation using the non magnetic metal screw (비 자성 금속 screw를 이용한 고정술에서 주파수 부호화 경사 방향 변환에 따른 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-So
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Because of causing the geometrical transformation of the magnetic field, the patient implementing the fixation using the nonmagnetic metal screw causes the magnetic susceptibility artifact at an image. Thus, in this research, the distortion measure of the image according to the frequency oblique direction conversion tried to be compared in the magnetic susceptibility artifact occurence. First, the itself phantom inserting the nonmagnetic metal screw of the titanium component was made and the region of interest was set up and the frequency oblique direction the anterior - back side was converted to the right-to-left direction in the axial image and a right-to-left was converted to the upper side - bottom side in the coronal plane and the upper - bottom side was converted to the anterior - back side in the sagittal plane and the distortion measure of the region of interest was compared, it observed. In a result, when converting the frequency oblique direction, the distortion difference of the region of interest could be confirmed and it is considered to enhance the diagnostics efficiency changing the oblique direction appropriately.